Lecture 8: The Change of Basis Formula for the Matrix of a Linear Transformation

The Second Change of Basis Formula

Recall that $P_{\mathscr{C} \longleftarrow \mathscr{B}}$, the change of basis matrix from the basis \mathscr{B} to the basis \mathscr{C} (so read from right to left) is the matrix whose columns are the basis vectors of \mathscr{B} written out in terms of \mathscr{C}.

Theorem (The second change of basis formula)

Suppose $T: V \longrightarrow V$ is a linear transformation and \mathscr{B} and \mathscr{C} are bases of V.
Then

$$
\begin{equation*}
\mathscr{C}_{\mathscr{C}}[T]_{\mathscr{C}}=P_{\mathscr{C} \longleftarrow \mathscr{B}}[T]_{\mathscr{B}} P_{\mathscr{B} \leftarrow \mathscr{C}} \tag{*}
\end{equation*}
$$

The whole point of the notation is to make this formula easy to remember. Mnemonic-keep the \mathscr{B} 's together.

Proof. By Proposition (1) of Lecture 7, we have

$$
P_{\mathscr{B} \leftarrow \mathscr{C}}={ }_{\mathscr{B}}\left[I_{V}\right]_{\mathscr{C}}
$$

and

$$
P_{\mathscr{C} \leftarrow \mathscr{B}}={ }_{\mathscr{C}}\left[I_{V}\right]_{\mathscr{B}} .
$$

Hence, the right-hand side of $(*)$ becomes

$$
\text { RHS }={ }_{\mathscr{C}}\left[I_{V}\right]_{\mathscr{B}} \bullet{ }_{\mathscr{B}}[T]_{\mathscr{B}} \bullet{ }_{\mathscr{B}}\left[I_{V}\right]_{\mathscr{C}} .
$$

Here • is matrix multiplication.

But by Proposition (1) of Lecture 6 (applied twice) we have

$$
\begin{aligned}
\operatorname{RHS} & =\mathscr{C}_{6}\left[I_{V} \circ T \circ I_{V}\right]_{\mathscr{C}} \\
& ={ }_{\mathscr{C}}[T]_{\mathscr{C}} .
\end{aligned}
$$

We now do two examples.

Problem 1

Let T be the linear transformation for \mathbb{R}^{2} to \mathbb{R}^{2} whose matrix $\mathscr{E}_{\mathscr{E}}[T]_{\mathscr{E}}$ relative to the standard basis $\mathscr{E}=\{(1,0),(0,1)\}$ is

$$
{ }_{\mathscr{E}}[T]_{\mathscr{E}}=A=\left(\begin{array}{ll}
a & b \\
c & c
\end{array}\right)
$$

Let $\mathscr{C}=\left\{f_{1}, f_{2}\right\}$ be the new basis for \mathbb{R}^{2} given by $f_{1}=\frac{e_{1}+e_{2}}{\sqrt{2}}$, $f_{2}=\frac{-e_{1}+e_{2}}{\sqrt{2}}$ (so the old basis e_{1}, e_{2} rotated by 45°).
Find the matrix C of T relative to f_{1}, f_{2}. So we want

$$
C=\mathscr{C}_{\mathscr{C}}[T]_{\mathscr{C}} .
$$

Solution

There are two steps

1. Compute the change of basis matrices $P_{\mathscr{C} \longleftarrow \mathscr{B}}$ and $P_{\mathscr{B} \longleftarrow \mathscr{C}}$.
2. Apply the Second Change of Basis Formula from Theorem 2 (pg 13).

Step 1
Put $\mathscr{E}=$ standard basis $=\left\{e_{1}, e_{2}\right\}$ (we will use \mathscr{E} instead of \mathscr{B} so you have to replace \mathscr{B} by \mathscr{E} in the formulas) amd $\mathscr{C}=\left\{f_{1}, f_{2}\right\}$.

Basic Principle
It is easy to compute $P_{\mathscr{E} \longleftarrow \mathscr{C}}$ for any basis $\mathscr{C} \in \mathbb{R}^{n}$. Then you compute $P_{\mathscr{C} \longleftarrow \mathscr{E}}$ by inverting $P_{\mathscr{E}} \longleftarrow \mathscr{C}$.

Computation of $P_{\mathscr{E} \leftarrow \mathscr{C}}$
The change of basis matrix from \mathscr{C} to \mathscr{E} is the matrix whose i-th column is the coordinates of f_{1} relative to e_{1}, e_{2} so

$$
P_{\mathscr{E} \longleftarrow \mathscr{C}}=\begin{gathered}
e_{1} \\
e_{2}
\end{gathered}\left(\begin{array}{cc}
f_{1} & f_{2} \\
\downarrow & \downarrow
\end{array}\right)=\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right)
$$

So "writing \mathscr{C} in terms of \mathscr{E} ".
Computation of $P_{\mathscr{C} \longleftarrow \mathscr{E}}$

$$
P_{\mathscr{C} \leftarrow \mathscr{E}}=\left(P_{\mathscr{E} \leftarrow \mathscr{C}}\right)^{-1}=\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right)^{-1}=\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right)
$$

Problem 1

Step 2 Apply the second change of basis formula.

$$
\mathscr{C}_{[}[T]_{\mathscr{C}}=P_{\mathscr{C} \longleftarrow \mathscr{E}{ }_{\mathscr{E}}}[T]_{\mathscr{E}} P_{\mathscr{E} \longleftarrow \mathscr{C}}
$$

So,

$$
\begin{aligned}
C & =P^{-1} A P \\
& =\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right)\left(\begin{array}{cc}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right) \\
& =\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right)\left(\begin{array}{ll}
\frac{a+b}{\sqrt{2}} & \frac{-a+b}{\sqrt{2}} \\
\frac{c+d}{\sqrt{2}} & \frac{-c+d}{\sqrt{2}}
\end{array}\right) \\
& =\left(\begin{array}{ll}
\frac{a+b+c+d}{2} & \frac{-a-c+b+d}{2} \\
\frac{-a-b+c+d}{2} & \frac{-b-c+a+d}{2}
\end{array}\right)
\end{aligned}
$$

Problem 2

Let L be the (oriented) line that makes an angle of θ radians with the x-axis. Let r be reflection in the line L. Find the matrix of r relative to the standard basis \mathscr{E}.

Solution

The unit vector $t=(\cos \theta, \sin \theta)$ lies in L and has correction orientation. Use trigonometry.

The vector $n=(-\sin \theta, \cos \theta)$ perpendicular to the line L (see the picture). I use t for "tangent" and n for "normal".
The reflection r leave the line L fixed and carries the normal vector $(-\sin \theta, \cos \theta)$ to its negative. Think of L as the mirror for r.
Hence

$$
r(t)=t
$$

and

$$
r(n)=-n
$$

Put $\mathscr{C}=\{t, n\}$ (t and n are orthogonal so they are independent).

Problem 2

Hence

$$
\begin{gathered}
t \\
\mathscr{C}_{\mathscr{C}}[r]_{\mathscr{C}}
\end{gathered}=\begin{gathered}
t \\
n
\end{gathered}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

We now apply the Second Change of Basis Formula to compute ${ }_{\mathscr{E}}[r]_{\mathscr{E}}$. Step 1 Compute the change of basis matrices $P_{\mathscr{E} \longleftarrow \mathscr{C}}$ and $P_{\mathscr{C} \longleftarrow \mathscr{E}}$.

$$
P_{\mathscr{E} \longleftarrow \mathscr{C}}=\begin{gathered}
t \\
e_{1} \\
e_{2}
\end{gathered}\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)
$$

Hence

$$
P_{\mathscr{C} \longleftarrow \mathscr{E}}=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)^{-1}=\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right)
$$

This matrix has determinant det $=1$.

Problem 2

Step 2 By the Second Change of Basis Formula we have:

$$
\begin{aligned}
{[r]_{\mathscr{E}} } & =P_{\mathscr{E} \leftarrow \mathscr{C}} \leftarrow \mathscr{C}[r]_{\mathscr{C}} P_{\mathscr{C}} \leftarrow \mathscr{E} \\
& =\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right) \\
& =\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
\sin \theta & -\cos \theta
\end{array}\right)\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right) \\
& =\left(\begin{array}{cc}
\cos ^{2} \theta-\sin ^{2} \theta & 2 \cos \theta \sin \theta \\
2 \cos \theta \sin \theta & -\left(\cos ^{2} \theta-\sin ^{2} \theta\right)
\end{array}\right) \\
& =\left(\begin{array}{cc}
\cos 2 \theta & \sin 2 \theta \\
\sin 2 \theta & -\cos 2 \theta
\end{array}\right) \\
& =\left(\begin{array}{cc}
\cos 2 \theta & -\sin 2 \theta \\
\sin 2 \theta & \cos 2 \theta
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
\end{aligned}
$$

In the last line, the first matrix is a rotation matrix and the second matrix is a reflection accross the x-matrix.

