Lecture 8: The Change of Basis Formula for the Matrix of a Linear Transformation

通 と く ヨ と く ヨ と

э

Recall that $P_{\mathscr{C} \leftarrow \mathscr{B}}$, the change of basis matrix from the basis \mathscr{B} to the basis \mathscr{C} (so read from right to left) is the matrix whose columns are the basis vectors of \mathscr{B} written out in terms of \mathscr{C} .

Theorem (The second change of basis formula)

Suppose $T: V \longrightarrow V$ is a linear transformation and $\mathscr B$ and $\mathscr C$ are bases of V.

Then

$${}_{\mathscr{C}}[T]_{\mathscr{C}} = P_{\mathscr{C} \longleftarrow \mathscr{B}} {}_{\mathscr{B}}[T]_{\mathscr{B}} P_{\mathscr{B} \longleftarrow \mathscr{C}} \qquad (*)$$

◆□ → ◆□ → ◆三 → ◆三 → ● ● のへの

The whole point of the notation is to make this formula easy to remember. Mnemonic-keep the \mathscr{B} 's together.

Proof. By Proposition (1) of Lecture 7, we have

$$P_{\mathscr{B}\longleftarrow\mathscr{C}} = \mathscr{B}[I_V]_{\mathscr{C}}$$

and

$$P_{\mathscr{C} \longleftarrow \mathscr{B}} = {}_{\mathscr{C}} [I_V]_{\mathscr{B}}.$$

Hence, the right-hand side of (*) becomes

$$\mathrm{RHS} = _{\mathscr{C}}[I_V]_{\mathscr{B}} \bullet _{\mathscr{B}}[T]_{\mathscr{B}} \bullet _{\mathscr{B}}[I_V]_{\mathscr{C}}.$$

Here • is matrix multiplication.

But by Proposition (1) of Lecture 6 (applied twice) we have

RHS =
$${}_{\mathscr{C}}[I_V \circ T \circ I_V]_{\mathscr{C}}$$

= ${}_{\mathscr{C}}[T]_{\mathscr{C}}.$

・ロン ・回と ・ヨン ・ ヨン

э.

We now do two examples.

Let T be the linear transformation for \mathbb{R}^2 to \mathbb{R}^2 whose matrix $_{\mathscr{E}}[T]_{\mathscr{E}}$ relative to the standard basis $\mathscr{E} = \{(1, 0), (0, 1)\}$ is

$${}_{\mathscr{E}}[T]_{\mathscr{E}} = A = \left(\begin{array}{cc} a & b \\ c & c \end{array}\right)$$

Let $\mathscr{C} = \{f_1, f_2\}$ be the new basis for \mathbb{R}^2 given by $f_1 = \frac{e_1 + e_2}{\sqrt{2}}$, $f_2 = \frac{-e_1 + e_2}{\sqrt{2}}$ (so the old basis e_1 , e_2 rotated by 45°). Find the matrix C of T relative to f_1 , f_2 . So we want

$$C = {}_{\mathscr{C}}[T]_{\mathscr{C}}.$$

Solution

There are two steps

- 1. Compute the change of basis matrices $P_{\mathscr{C} \longleftarrow \mathscr{B}}$ and $P_{\mathscr{B} \longleftarrow \mathscr{C}}$.
- 2. Apply the Second Change of Basis Formula from Theorem 2 (pg 13).

Step 1

Put $\mathscr{E} = \text{standard basis} = \{e_1, e_2\}$ (we will use \mathscr{E} instead of \mathscr{B} so you have to replace \mathscr{B} by \mathscr{E} in the formulas) amd $\mathscr{C} = \{f_1, f_2\}$.

Basic Principle

It is easy to compute $P_{\mathscr{E} \leftarrow \mathscr{C}}$ for any basis $\mathscr{C} \in \mathbb{R}^n$. Then you compute $P_{\mathscr{C} \leftarrow \mathscr{C}}$ by inverting $P_{\mathscr{E} \leftarrow \mathscr{C}}$.

Computation of $P_{\mathscr{E}} \longleftarrow \mathscr{C}$

The change of basis matrix from \mathscr{C} to \mathscr{E} is the matrix whose *i*-th column is the coordinates of f_1 relative to e_1 , e_2 so

$$P_{\mathscr{E} \longleftarrow \mathscr{C}} = \begin{array}{c} e_1 \\ e_2 \end{array} \begin{pmatrix} f_1 & f_2 \\ \downarrow & \downarrow \end{array} \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}$$

So "writing \mathscr{C} in terms of \mathscr{E} ".

Computation of $P_{\mathscr{C} \longleftarrow \mathscr{E}}$

$$P_{\mathscr{C} \leftarrow \mathscr{C}} = \left(P_{\mathscr{C} \leftarrow \mathscr{C}}\right)^{-1} = \left(\begin{array}{cc} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{array}\right)^{-1} = \left(\begin{array}{cc} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{array}\right)$$

Step 2 Apply the second change of basis formula.

$${}_{\mathscr{C}}[T]_{\mathscr{C}} = P_{\mathscr{C} \longleftarrow \mathscr{E}} {}_{\mathscr{E}}[T]_{\mathscr{E}} P_{\mathscr{E} \longleftarrow \mathscr{C}}$$

So,

$$C = P^{-1}AP$$

$$= \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}$$

$$= \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} \frac{a+b}{\sqrt{2}} & \frac{-a+b}{\sqrt{2}} \\ \frac{c+d}{\sqrt{2}} & \frac{-c+d}{\sqrt{2}} \end{pmatrix}$$

$$= \begin{pmatrix} \frac{a+b+c+d}{2} & \frac{-a-c+b+d}{2} \\ \frac{-a-b+c+d}{2} & \frac{-b-c+a+d}{2} \end{pmatrix}$$

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

Let L be the (oriented) line that makes an angle of θ radians with the x-axis. Let r be reflection in the line L. Find the matrix of r relative to the standard basis \mathscr{E} .

Solution

The unit vector $t = (\cos \theta, \sin \theta)$ lies in L and has correction orientation. Use trigonometry.

The vector $n = (-\sin\theta, \cos\theta)$ perpendicular to the line L (see the picture). I use t for "tangent" and n for "normal". The reflection r leave the line L fixed and carries the normal vector $(-\sin\theta, \cos\theta)$ to its negative. Think of L as the mirror for r. Hence

$$r(t) = t$$

and

$$r(n) = -n.$$

▲ロ → ▲ 団 → ▲ 臣 → ▲ 臣 → の < ⊙

Put $\mathscr{C} = \{t, n\}$ (t and n are orthogonal so they are independent).

Hence

$$\begin{array}{c} t & n \\ & & \\ _{\mathscr{C}}[r]_{\mathscr{C}} = \begin{array}{c} t \\ n \end{array} \left(\begin{array}{c} 1 & 0 \\ 0 & -1 \end{array} \right) = \left(\begin{array}{c} 1 & 0 \\ 0 & -1 \end{array} \right) \end{array}$$

We now apply the Second Change of Basis Formula to compute ${}_{\mathscr{E}}[r]_{\mathscr{E}}$. Step 1 Compute the change of basis matrices $P_{\mathscr{E}} \underset{\mathscr{C}}{\longrightarrow} \mathscr{E}$ and $P_{\mathscr{C}} \underset{\mathscr{C}}{\longrightarrow} \mathscr{E}$.

$$P_{\mathscr{E} \leftarrow -\mathscr{C}} = \begin{array}{c} e_1 \\ e_2 \end{array} \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{array} \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

Hence

$$P_{\mathscr{C} \longleftarrow \mathscr{E}} = \left(\begin{array}{cc} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{array} \right)^{-1} = \left(\begin{array}{cc} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{array} \right)$$

This matrix has determinant det = 1.

Step 2 By the Second Change of Basis Formula we have:

$$\begin{aligned} r]_{\mathscr{E}} &= P_{\mathscr{E} \longleftarrow \mathscr{C} \mathscr{C}}[r]_{\mathscr{C}} P_{\mathscr{C} \longleftarrow \mathscr{E}} \\ &= \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \\ &= \begin{pmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{pmatrix} \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \\ &= \begin{pmatrix} \cos^2 \theta - \sin^2 \theta & 2\cos \theta \sin \theta \\ 2\cos \theta \sin \theta & -(\cos^2 \theta - \sin^2 \theta) \end{pmatrix} \\ &= \begin{pmatrix} \cos 2\theta & \sin 2\theta \\ \sin 2\theta & -\cos 2\theta \end{pmatrix} \\ &= \begin{pmatrix} \cos 2\theta & -\sin 2\theta \\ \sin 2\theta & \cos 2\theta \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \end{aligned}$$

In the last line, the first matrix is a rotation matrix and the second matrix is a reflection accross the x-matrix.