## Lecture 9: Inner Product Spaces

Today we start Chapter 4.

## Inner Product

## Definition (Text, Definition 15.1)

An inner or dot product ( , ) on $V$ is a function, which assigns to each pair of vectors $u, v$ in $V$ a real number. $(u, v)$ satisfies three axioms:
(i) Bilinear

$$
\begin{aligned}
(u+v, w) & =(u, w)+(v, w) \\
(u, v+w) & =(u, v)+(u, w) \\
(c u, v) & =(u, c v)=c(u, v), \text { all } c \in \mathbb{R}
\end{aligned}
$$

(ii) Symmetric

$$
(u, v)=(v, u), \text { all } u, v \in V .
$$

(iii) Positive Definite

For all $u \in U$

$$
(u, u) \geq 0
$$

and

$$
(u, u)=0 \Longleftrightarrow u=0 .
$$

## Examples

(1) $\mathbb{R}^{n}$

$$
\left(\left(x_{1}, x_{2}, \ldots, x_{n}\right),\left(y_{1}, y_{2}, \ldots, y_{n}\right)\right)=x_{1} y_{1}+x_{2} y_{2}+\ldots+x_{n} y_{n}
$$

(2) Let $C[0,1]=$ continuous functions on $[0,1]$.

$$
(f, g)=\int_{0}^{1} f(x) g(x) \mathrm{d} x
$$

In any inner product space we can do Euclidean geometry, i.e., we can define lengths/distances and angles.

## Definition

Let $v \in V$. We define the length of $v$, denoted $\|v\|$ by

$$
\|v\|=\sqrt{(v, v)}
$$

So in $\mathbb{R}^{n}$ with $v=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ we have

$$
\|v\|=\sqrt{\sum_{i=1}^{n} x_{i}^{2}}
$$

We define the distance between two vectors $v$ and $w$ by

$$
\mathrm{d}(v, w)=\|v-w\| .
$$

This definition is motivated by the picture.

We define the unoriented angle $\measuredangle(u, v)$ (in $[0, \pi]$ ) between two vectors $u$ and $v$ by

$$
\begin{equation*}
\measuredangle(u, v)=\cos ^{-1}\left(\frac{(u, v)}{\|u\|\|v\|}\right) \tag{*}
\end{equation*}
$$

$\cos ^{-1}$ has domain $[-1,1]$, so in order for $(*)$ to be a correct definition, we have to prove

$$
-1 \leq \frac{(u, v)}{\|u\|\|v\|} \leq 1
$$

The unoriented angle does not take into account the positive or negative rotation

$$
\measuredangle(u, v)=\measuredangle(v, u)
$$

## Theorem (Cauchy-Schwartz (CS))

$$
|(u, v)| \leq\|u\|\|v\|
$$

Proof. Let $u, v \in V$. Then for all $t \in \mathbb{R}$.

$$
(u-t v, u-t v) \geq 0
$$

But

$$
(u-t v, u-t v)=(u, u)-2(u, v) t+(v, v) t^{2} .
$$

Consider the quadratic function

$$
f(t)=(v, v) t^{2}-2(u, v) t+(u, u) .
$$

We have $f(t) \geq 0$.

But a quadratic function $f(t)=a t^{2}+b t+c$ satisfying $f(t) \geq 0$ has either two equal real roots or imaginary roots.
Hence

$$
b^{2}-4 a c=4(u, v)^{2}-4(u, u)(v, v) \leq 0,
$$

so

$$
(u, v)^{2} \leq(u, u)(v, v)
$$

and taking the square root of each side

$$
|(u, v)| \leq\|u\|\| \| v \| .
$$

## Orthogonality anf Orthonormal Bases

## Definition (1)

Two vectors $u$ and $v$ in $V$ are said to be orthogonal if

$$
(u, v)=0
$$

Remark: Since $\cos ^{-1} 0=\frac{\pi}{2}$,

$$
\begin{aligned}
(u, v) & \Longleftrightarrow \measuredangle(u, v)=\frac{\pi}{2} \\
& \Longleftrightarrow \text { they are perpendicular. }
\end{aligned}
$$

## Definition

A basis $\mathscr{B}=\left\{u_{1}, \ldots, u_{n}\right\}$ for $V$ is said to be orthonormal if
(1) $\left\|u_{j}\right\|=1,1 \leq j \leq n$.
(2) $\left(u_{i}, u_{j}\right)=0, i \neq j$.

## Examples

(1) $\mathbb{R}^{n}, \mathscr{B}=\left\{e_{1}, \ldots, e_{n}\right\}$ so the standard basis for $\mathbb{R}^{n}$ is orthonormal.
(2) $L^{2}[0,1]$

$$
\mathscr{B}=\{1, \sin (n x), \cos (n x): n \in \mathbb{Z}, n>0\}
$$

In the next lecture we will prove

## Theorem

Every finite-dimensional vector space has an orthonormal basis (in fact, many).

## The Triangle Inequalities

Before doing this we will prove the triangle inequalities. Given three vectors $u, v, w \in V$

$$
\left.\begin{array}{r}
\mathrm{d}(u, v) \leq \mathrm{d}(u, w)+\mathrm{d}(w, v)  \tag{T1}\\
\mathrm{d}(u, w) \leq \mathrm{d}(u, v)+\mathrm{d}(v, w) \\
\mathrm{d}(v, w) \leq \mathrm{d}(v, u)+\mathrm{d}(u, w)
\end{array}\right\}
$$

The point is that the length of any side of a triangle is less than the sums of the lengths of the other two sides.

From the definition of distance the triangle inequalities are equivalent to

$$
\left.\begin{array}{rl}
\|u-v\| & \leq\|u-w\|+\|w-v\| \\
\|u-w\| & \leq\|u-v\|+\|v-w\| \\
\|v-w\| & \leq\|v-u\|+\|u-w\|
\end{array}\right\}(T 2)
$$

Put $a=v-w, b=v-u, c=u-w$.
Then $a=b+c$ and the triangle inequality is equivalent to proving

## Theorem (Text, Theorem 15.6)

Suppose $b, c \in V$. Then

$$
\begin{equation*}
\|b+c\| \leq\|b\|+\|c\| \tag{T3}
\end{equation*}
$$

(Put $b=v-u$ and $c=u-w$ to get (T2) and hence (T1).)

Proof. Square both sides of (T3) to get

$$
\begin{equation*}
\|b+c\|^{2} \leq\|b\|^{2}+2\|b\|\|c\|+\|c\|^{2} \tag{b}
\end{equation*}
$$

But

$$
\begin{aligned}
\|b+c\|^{2} & =(b+c, b+c)=(b, b)+2(b, c)+(c, c) \\
& =\|b\|^{2}+2(b, c)+\|c\|^{2} .
\end{aligned}
$$

So (b) is equivalent to

$$
\|b\|^{2}+2(b, c)+\|c\|^{2} \leq\|b\|^{2}+2\|b\|\|c\|+\|c\|^{2} .
$$

But this inequality holds because

$$
(b, c) \leq\|b\|\|c\|
$$

## Orthonormal Basis

## Definition

A subset $\left\{u_{1}, \ldots, u_{n}\right\}$ of $V$ is an orthonormal set if

$$
\left(u_{i}, u_{i}\right)=1 \text { and }\left(u_{i}, u_{j}\right)=0, i \neq j .
$$

## Lemma

Every orthonormal set in an independent set.
Proof. Suppose $\left\{u_{1}, \ldots, u_{n}\right\}$ is an orthonormal set and

$$
\begin{equation*}
\sum_{i=1}^{n} c_{i} u_{i}=0 \tag{*}
\end{equation*}
$$

## Orthonormal Basis

Take the dot product of each side of $(*)$ with $u_{j}$

$$
\text { LHS }=\left(\sum_{i=1}^{n} c_{i} u_{i}, u_{j}\right)==\sum_{i=1}^{n} c_{i}\left(u_{i}, u_{j}\right) .
$$

But $\left(u_{i}, u_{j}\right)=0$ unless $i=j$, so

$$
\mathrm{LHS}=c_{j}\left(u_{j}, u_{j}\right)=c_{j} .
$$

(because $\left.\left(u_{j}, u_{j}\right)=1\right)$.

$$
\text { RHS }=\left(0, u_{j}\right)=0 .
$$

Hence $c_{j}=0$, all $j$ and $\left\{u_{1}, \ldots, u_{n}\right\}$ is an independent set.

Next we prove the very useful formula for the coordinates of a vector $v$ relative to an orthonormal basis $\mathscr{U}=\left\{u_{1}, \ldots, u_{n}\right\}$.

## Proposition

Suppose $\mathscr{U}=\left\{u_{1}, \ldots, u_{n}\right\}$ is an orthonormal basis. Let $v \in V$. Then the coordinates of $v$ relative to [?] are

$$
\left(\left(v, u_{1}\right), \ldots,\left(v, u_{n}\right)\right) .
$$

## Orthonormal Basis

Proof. Let $\left(c_{1}, \ldots, c_{n}\right)$ be coordinates of $v$ relative to $\mathscr{U}$. Hence

$$
v=\sum_{i=1}^{n} c_{i} u_{i} \quad(* *)
$$

Take the inner product of each side of $(* *)$ with $u_{j}$. Then LHS $=\left(v, u_{j}\right)$ and as for the case of $(*)$ we get

$$
\mathrm{RHS}=c_{j}
$$

Hence

$$
c_{j}=\left(v, u_{j}\right)
$$

Finally, we will need a formula for the matrix $M(T)$ (or $\mathscr{U}^{[ }[T]_{\mathscr{U}}$ ) for the matrix of a linear transformation $T \in L(V, V)$ relative to a orthonormal basis $\mathscr{U}=\left\{u_{1}, \ldots, u_{n}\right\}$.

## Proposition

$$
M(T)=\left(a_{i j}\right)
$$

where $a_{i j}=\left(T e_{j}, e_{i}\right)$.

Proof. The entries $a_{i j}$ of $M(T)$ are defined by the equation

$$
T\left(u_{j}\right)=\sum_{k=1}^{n} a_{k j} u_{i}, \quad 1 \leq j \leq n .
$$

Take the inner product of each side of this equaiton with $u_{i}$. We get

$$
\begin{aligned}
\left(T\left(u_{j}\right), u_{j}\right) & =\left(\sum_{i=1}^{n} a_{k j} u_{k}, u_{i}\right)=\sum_{i=1}^{n} a_{k j}\left(u_{k}, u_{i}\right) \\
& =a_{i j}
\end{aligned}
$$

since $\left(u_{k}, u_{i}\right)=0$ unless $k=i$.

