Lecture 10: The Gram-Schmidt Orthogonalization Process

Let $\left\{v_{1}, \ldots, v_{n}\right\}$ be an ordered independent set. Then there exists an orthonormal set $\left\{u_{1}, \ldots, u_{k}\right\}$ such that

$$
\operatorname{span}\left\{v_{1}, \ldots, v_{n}\right\}=\operatorname{span}\left\{u_{1}, \ldots, u_{k}\right\}, \quad 1 \leq i \leq k
$$

Proof.
Step 1
Put $u_{1}=\frac{v_{1}}{\left\|v_{1}\right\|}$.
Step 2
$\overline{\text { Make }} v_{2}$ orthogonal to u_{1} by defining

$$
w_{2}=v_{2}-\left(v_{2}, u_{1}\right) u_{1} .
$$

Remark: In lecture 11, we will learn that $\left(v_{2}, u_{1}\right) u_{1}$ is the projection of v_{2} onto the line through v_{1} so we are subtracting this projection from v_{1}. Then w_{2} is perpendicular to u_{1}. Indeed

$$
\begin{aligned}
\left(w_{2}, u_{1}\right) & =\left(v_{2}-\left(v_{2}, u_{1}\right) u_{1}, u_{1}\right) \\
& =\left(v_{2}, u_{1}\right)-\left(v_{2}, u_{1}\right)\left(u_{1}, v_{1}\right) \\
& =\left(v_{2}, u_{1}\right)-\left(v_{2}, u_{1}\right) \\
& =0
\end{aligned}
$$

Then

$$
\begin{aligned}
\operatorname{span}\left(u_{1}, w_{2}\right) & =\operatorname{span}\left(v_{1}, w_{2}\right) \\
& =\operatorname{span}\left(v_{1}, v_{2}\right)
\end{aligned}(* *)
$$

$(* *)$ holds because any linear combination of v_{1} and w_{2} is a linear combination of v_{1} and v_{2} and vice versa.

Here is why:
$v \in \operatorname{span}\left(v_{1}, w_{2}\right) \Longrightarrow$ there exists c_{1} and c_{2} so that

$$
v=c_{1} v_{1}+c_{2} v_{2}
$$

But

$$
\begin{aligned}
w_{2} & =v_{2}-\left(v_{2}, u_{1}\right) u_{1} \\
& =v_{2}-\frac{1}{\left\|v_{1}\right\|^{2}}\left(v_{2}, v_{1}\right) v_{1} .
\end{aligned}
$$

So

$$
\begin{aligned}
v & =c_{1} v_{1}+c_{2}\left(v_{2}-\frac{1}{\left\|v_{1}\right\|^{2}}\left(v_{2}, v_{1}\right) v_{1}\right) \\
& =\left[c_{1}-\frac{1}{\left\|v_{1}\right\|^{2}}\left(v_{2}, v_{1}\right)\right] v_{1}+c_{2} v_{2} .
\end{aligned}
$$

So, $v \in \operatorname{span}\left(v_{1}, v_{2}\right)$. Conversely, if $v \in \operatorname{span}\left(v_{1}, v_{2}\right)$. Write

$$
v_{2}=w_{2}+\frac{1}{\left\|v_{1}\right\|^{2}}\left(v_{2}, v_{1}\right) v_{1}
$$

and procede as above to prove $v \in \operatorname{span}\left(v 1, w_{2}\right)$.

At each stage in the following prood a formula like (**) has to be checked. I will leave this to you.
Now we have $\left\{u_{1}, u_{2}, v_{3}, v_{4}, \ldots, v_{k}\right\}$ with $\left\{u_{1}, u_{2}\right\}$ and orthonormal set.
Now make v_{3} orthogonal by defining

$$
w_{3}=v_{3}-\left(v_{3}, u_{1}\right) u_{1}-\left(v_{3}, u_{2}\right) u_{2} .
$$

(We are subtracting off the projection of v_{3} onto span $\left\{u_{1}, u_{2}\right\}$) We have as before (only more complicated)

The induction step from $i-1$ to i
Suppose we have

$$
\left\{u_{1} u_{2}, \ldots, u_{i-1}, v_{i}, v_{i+1}, \ldots, v_{k}\right\}
$$

where $\left\{u_{1} u_{2}, \ldots, u_{i-1}\right\}$ is an orthonormal set with

$$
\operatorname{span}\left\{u_{1} u_{2}, \ldots, u_{i-1}\right\}=\operatorname{span}\left\{v_{1} v_{2}, \ldots, v_{i-1}\right\} .
$$

Put $w_{i}=v_{i}-\left[\left(v_{i}, u_{1}\right) u_{1}+\ldots\left(v_{i}, u_{i-1}\right) u_{i-1}\right]$. Then $\left(w_{i}, u_{j}\right)=0, \quad 1 \leq j \leq i-1$ and

$$
\begin{aligned}
\operatorname{span}\left\{u_{1} u_{2}, \ldots, u_{i-1}, w_{i}\right\} & =\left\{u_{1} u_{2}, \ldots, u_{i-1}, v_{i}\right\} \\
& =\operatorname{span}\left\{v_{1} v_{2}, \ldots, v_{i-1}, v_{i}\right\} .
\end{aligned}
$$

Now, put

$$
u_{i}=\frac{w_{i}}{\left\|w_{i}\right\|}
$$

and we have performed the induction step.

Corollary

Every finite dimensional vector space V with an inner product has an orthonormal basis.

Proof. Choose a basis $\mathscr{B}=\left\{b_{1}, \ldots, b_{n}\right\}$ for V and apply Gram-Schmidt to \mathscr{B} to get an orthonormal basis for V.

Hard Problem: Show that change of basis matrix $P_{\mathscr{B} \longleftarrow \mathscr{U}}$ from \mathscr{U} to \mathscr{B} is upper triangular, that is

$$
P_{\mathscr{B} \longleftarrow \mathscr{U}}=\left(\begin{array}{cccc}
* & * & \ldots & * \\
0 & * & \ldots & * \\
0 & 0 & \ldots & * \\
\vdots & \vdots & \vdots & * \\
0 & 0 & \ldots & 0
\end{array}\right)
$$

How is this related to

$$
\operatorname{span}\left\{u_{1}, u_{2}, \ldots, v_{i}\right\}=\operatorname{span}\left\{b_{1}, b_{2}, \ldots, b_{i}\right\}, 1 \leq i \leq n ?
$$

