Lecture 11: Orthogonal Groups

Orthogonal Groups

Definition

Suppose $(v,()$,$) is an inner product space. Let S \in \operatorname{Hom}(V, V)$. Then S is said to be orthogonal if

$$
(S v, S w)=(v, w), \quad \text { all } v, w \in V
$$

We let $O(V,()$,$) denote the set of orthogonal linear transformations.$ (We will often write $O(V)$.)

Proposition

$O(v)$ is a subgroup $\operatorname{Aut}(V)$.
Proof. We show $O(v)$ is closed under \circ and inverse.

Closed under 0 :
Suppose $S, T \in O(V)$. Let $v, w \in V$. Then

$$
\begin{aligned}
((S \circ T) v,(S \circ T) w) & =((S(T v),(S(T w)) \text { by definition } \circ \\
& =(T v, T w) \text { using } S \in O(V) \\
& =(v, w) \text { using } T \in O(V)
\end{aligned}
$$

Closed under inverse:
Let $S \in O(V)$. First we show S^{-1} exists in $\operatorname{Hom}(V, V)$, then we will show $S^{1} \in O(V)$. To show S is an invertible linear transformation it suffices to show S is $1: 1$ because $S: V \longrightarrow V$ so $1: 1 \Longrightarrow$ onto. To show S is 1:1 it suffices to prove $N(S)=\{0\}$.
Suppose $v \in N(S)$. Then $S v=0$ and hence $(S v, S v)=0$. Since S is orthogonal, this implies (v, v), hence $v=0$. Thus $N(S)=0$.

Now we have $S^{-1} \in \operatorname{Aut}(V)$, but is $S^{-1} \in O(V)$? Let $v, w \in V$, we need to show

$$
\begin{equation*}
\left(S^{-1} v, S^{-1} w\right)=(v, w) \tag{*}
\end{equation*}
$$

Since S is onto, there are $v^{\prime}, w^{\prime} \in V$, so that

$$
v=S v^{\prime}, w=S w^{\prime}
$$

Substituting in (*), we need to show

$$
\left(S^{-1} S v^{\prime}, S^{-1} S w^{\prime}\right)=\left(S v^{\prime}, S w^{\prime}\right)
$$

But $S^{-1} S=I_{V}$, so

$$
\left(v^{\prime}, w^{\prime}\right)=\left(S^{-1} S v^{\prime}, S^{-1} S w^{\prime}\right)=\left(S v^{\prime}, S w^{\prime}\right)
$$

Now since $\|\cdot\|$ and \measuredangle are defined in terms of (,), we have $S \in O(V) \Longrightarrow S$ preserves length and angles.

Precisely, for $v, w \in V$, we have

$$
\begin{aligned}
\|S v\| & =\sqrt{(S v, S v)}=\sqrt{(v, v)}=\|V\| \\
\measuredangle(S v, S w) & =\frac{(S v, S w)}{\|S v\|\|S w\|}=\frac{(v, w)}{\|v\|\|w\|}=\measuredangle(v, w) .
\end{aligned}
$$

There is a converse:

Proposition

Suppose $S \in \operatorname{Hom}(V, V)$ and S preserves lengths (i.e., $\|S v\|=\|v\|$, for all $v \in V)$. Then $S \in O(V)$.

Proof. We will use an extremely important formula, the polarization formula:

$$
(u, v)=\frac{1}{2}\left(\|u+v\|^{2}-\|u\|^{2}-\|v\|^{2}\right)
$$

Now observe

$$
\begin{aligned}
(S u, S v) & =\frac{1}{2}\left(\|S u+S v\|^{2}-\|S u\|^{2}-\|S v\|^{2}\right) \\
& =\frac{1}{2}\left(\|S(u+v)\|^{2}-\|S u\|^{2}-\|S v\|^{2}\right) \\
& =\frac{1}{2}\left(\|u+v\|^{2}-\|S u\|^{2}-\|S v\|^{2}\right) \\
& =(u, v)
\end{aligned}
$$

Remark: It is not true that S preserve angles $\Longrightarrow S \in O(V)$.
Proposition (See page 131, \# 12)
If $S \in \operatorname{Hom}(V, V)$ preserves (right) angles then there exits $\lambda \in \mathbb{R}$ and $T \in O(V)$ so that

$$
S=\lambda T
$$

Note: In this case S is said to be conformal (or a similitude).

Transpose

We now introduce the important operation transpose.

Definition

Given $T \in \operatorname{Hom}(V, V)$, the transpose of T, denoted ${ }^{t} T$, is the linear transformation that satisfies

$$
\left({ }^{t} T, v\right)=(u, T v)
$$

We will see below that such a transformation exists (and it will be unique).
Given a matrix $A \in M_{n}(\mathbb{R}), A=\left(a_{i j}\right)$, we define the transpose of A denoted ${ }^{t} A$, to be the matrix obtained by interchanging the rows and columns of A (or reflextion in the diagonal).
Example:

$$
\text { If } A=\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right) \text { then }{ }^{t} A=\left(\begin{array}{lll}
1 & 4 & 7 \\
2 & 5 & 8 \\
3 & 6 & 9
\end{array}\right)
$$

The two transposes agree. Precisely, we have the following proposition.

Transpose

Proposition

Given an ordered orthonormal basis $\mathscr{U}=\left(u_{1}, \ldots, u_{n}\right)$ for V and $T \in \operatorname{Hom}(V, V)$,

$$
M\left({ }^{t} T\right)={ }^{t} M(T)
$$

Proof. Let

$$
\begin{aligned}
\left(a_{i j}\right) & =M\left({ }^{t} T\right) \\
\left(b_{i j}\right) & ={ }^{t} M(T)
\end{aligned}
$$

Then $a_{i j}=\left(T u_{i j}, u_{i}\right)$ and $b_{i j}=\left({ }^{t} T u j, u_{i}\right)$. Since (,) is symmetric,

$$
a_{i j}=\left(T u_{i j}, u_{i}\right)=\left(u_{i}, T u_{j}\right)=\left({ }^{t} T u j, u_{i}\right)=b_{i j} .
$$

Thus $a_{i j}=b_{i j}$.
Note: This proves existence and uniqueness: to determine ${ }^{t} T$, choose an orthonormal basis \mathscr{U} and let ${ }^{t} T$ be the (unique) linear transformation given by ${ }^{t} M(T)$.

Characterization of Orthogonal Transformations

We recall Proposition (2) from Lecture 6:

Proposition

Let V be a vector space and $T \in L(V V)=\operatorname{Hom}(V, V)$. Let $\mathscr{B}=\left\{b_{1}, \ldots, b_{n}\right\}$ be a basis for V. Let $v \in V$. Then

$$
[T(v) \mathscr{B}]_{=\mathscr{B}}[T]_{\mathscr{B}}[v]_{\mathscr{B}} .
$$

Lemma

Suppose $\left\{b_{1}, \ldots, b_{n}\right\}$ is an orthonormal basis for V. Let $v, w \in V$ and

$$
v=\sum_{i=1}^{n} w_{i} u_{i}, \quad w=\sum_{i=1}^{n} y_{i} u_{i}
$$

Then $(v, w)=\sum_{i=1}^{n} x_{i} y_{i}$.

Characterization of Orthogonal Transformations

Proof. We have

$$
\begin{aligned}
(v, w) & =\left(\sum_{i=1}^{n} w_{i} u_{i}, \sum_{j=1}^{n} y_{j} u_{j}\right) \\
& =\sum_{i=1}^{n} \sum_{j=1}^{n}\left(x_{i} u_{i}, y_{j} u_{j}\right) \\
& =\sum_{i=1}^{n} \sum_{j=1}^{n} x_{i} y_{j}\left(u_{i}, u_{j}\right)
\end{aligned}
$$

But

$$
\left(u_{i}, u_{j}\right)=\left\{\begin{array}{lll}
0 & \text { if } & i \neq j \\
1 & \text { if } & i=j
\end{array}\right.
$$

So,

$$
(v, w)=\sum_{i=1}^{n} x_{i} y_{i}\left(u_{i}, u_{i}\right)=\sum_{i=1}^{n} x_{i} y_{i} . \quad \square
$$

Characterization of Orthogonal Transformations

Theorem (Text, Theorem 15.11)

Let $T \in \operatorname{Hom}(V, V)$. The following are equivalent.
(1) $T \in O(V)$.
(2) For any orthonormal basis $\mathscr{U}=\left\{u_{1}, \ldots, u_{n}\right\}$, the set $\mathscr{U}^{\prime}=\left\{T u, \ldots, T u_{n}\right\}$ is again an orthonormal basis.
(3) The matrix $A=M(T)$ satisfies

$$
{ }^{t} A A=I
$$

where $\mathscr{U}=\left(u_{1}, \ldots, u_{n}\right)$ an orthonormal basis.
(4) The rown and columns of $A=M(T)$ are each orthonormal bases for V.

Characterization of Orthogonal Transformations

Proof.

$(1) \Longrightarrow(2)$

$$
\left(T u_{i}, T u_{j}\right)=\left(u_{i}, u_{j}\right)=\left\{\begin{array}{lll}
0 & \text { if } & i \neq j \\
1 & \text { if } & i=j
\end{array}\right.
$$

$(2) \Longrightarrow(3)$

$$
A=M(T)=\left(\begin{array}{ccc}
{\left[T u_{1}\right]_{\mathscr{U}}} & \ldots & {\left[T u_{n}\right]_{\mathscr{U}}} \\
\downarrow & \ldots & \downarrow
\end{array}\right)
$$

Then,

$$
{ }^{t} A A=\left(\begin{array}{cc}
{\left[T u_{1}\right]_{\mathscr{U}}} & \longrightarrow \\
& \vdots \\
{\left[T u_{n}\right]_{\mathscr{U}}} & \longrightarrow
\end{array}\right)\left(\begin{array}{ccc}
{\left[T u_{1}\right]_{\mathscr{U}}} & \ldots & {\left[T u_{n}\right]_{\mathscr{U}}} \\
\downarrow & \ldots & \downarrow
\end{array}\right)
$$

Characterization of Orthogonal Transformations

The $i j^{t h}$ entry of the resulting matrix is

$$
\begin{aligned}
\left(\left[T u_{i}\right]_{\mathscr{U}} \longrightarrow\right)\left(\left[T u_{j}\right]_{\mathscr{U}} \downarrow\right) & =\left[T u_{i}\right]_{\mathscr{U}} \cdot\left[T u_{j}\right]_{\mathscr{U}} \\
& =\left(T u_{i}, T u_{j}\right)=\left(u_{i}, u_{j}\right)=\left\{\begin{array}{lll}
0 & \text { if } & i \neq j \\
1 & \text { if } & i=j
\end{array}\right.
\end{aligned}
$$

Thus the resulting matrix is the identity matrix.
(3) \Longrightarrow (1) Since ${ }^{t} M(T) M(T)=I$, the identity matrix, we have ${ }^{t} T T=I$, the identity transformation. Thus

$$
(T u, T v)=\left({ }^{t} T T u, v\right)=(u, v),
$$

and hence $T \in O(V)$.

Characterization of Orthogonal Transformations

$(2) \Longrightarrow(4)$

$$
A=M(T)=\left(\begin{array}{ccc}
{\left[T u_{1}\right]_{\mathscr{U}}} & \ldots & {\left[T u_{n}\right]_{\mathscr{U}}} \\
\downarrow & \ldots & \downarrow
\end{array}\right)
$$

Hence the columns are an orthonormal basis. Also, if $T \in O(V)$, then ${ }^{t} T=T^{-1} \in O(V)$ and thus since the columns of ${ }^{t} T$ are an orthonormal basis, so are the rows of T.
(4) $\Longrightarrow(2)$ Since the columns of $A=M(T)$ are an orthonormal basis, $\left\{T u_{1} \ldots, T u_{n}\right\}$ is an orthonormal basis.

Orthogonal Matrices

Definition

A matrix $A \in M_{n}(\mathbb{R})$ is said to be an orthogonal matrix if

$$
{ }^{t} A A=I
$$

The set of orthogonal matrices is denoted $O(n)$.

Proposition

A is orthogonal $\Longrightarrow{ }^{t} A=A^{-1}$.

Proof.

(\Longrightarrow) We know A orthogonal $\Longrightarrow A^{-1}$ exists.

$$
{ }^{t} A A=I \Longrightarrow{ }^{t} A=A^{-1}
$$

where \Longrightarrow means right multiplications by A^{-1}.
(\Longleftarrow) Suppose ${ }^{t} A=A^{-1}$. Then ${ }^{t} A A=I$.

Orthogonal Matrices

Let $G L_{n}(\mathbb{R})$ denote the set of invertible n by n matrices.
$G L_{n}(\mathbb{R})$ is a group and $(A B)^{-1}=B^{-1} A^{-1}$. We've shown

Proposition

$O(n)$ is a subgroup of $G L_{n}(\mathbb{R})$.
The group $O(2)$

$$
\begin{aligned}
O(2) & =\left\{\begin{array}{cc}
\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right), & 0 \leq \theta \leq 2 \pi\} \\
& \cup\left\{\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
\sin \theta & -\cos \theta
\end{array}\right),\right.
\end{array} \quad 0 \leq \theta \leq 2 \pi\right\}
\end{aligned}
$$

Orthogonal Matrices

Proof.

$$
\begin{aligned}
& \left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in O(2) \Longleftrightarrow a^{2}+c^{2}=1 \\
& b^{2}+d^{2}=1 \\
& a b+c d=0 \text {. }
\end{aligned}
$$

$\Longleftrightarrow(a, c)$ is on circle, (b, d) is on the circle and (a, c) is orthogonal to (b, d).

