Lecture 12: Direct Sums and Projections

This lecture comes from the text, pages 195-198.

Direct Sums

Definition

Let V be a vector space and U and W be subspaces. Then V is said to be the direct sum of U and W, written $V=U \oplus W$, if every vector $v \in V$ has the unique expression

$$
v=u+w, u \in U, w \in W
$$

Some more definitions:

Definition

V is said to be the sum of U and W is every vector $v \in V$ has at least on expression

$$
v=u+w, u \in U, w \in W
$$

In this case, we write $V=U+W$.

Definition

U and W are said to be independent if $U \cap W=\{0\}$.

Direct Sums

Lemma

Let V be a vector space, $U, W \subseteq V$ subspaces. Then $V=U \oplus W$ if and only if
(i) $V=U+W$
(ii) $U \cap W=\{0\}$.

Proof. (\Longrightarrow) (i) is clear since every $v \in V$ can be written (uniquely) as $v=u+w$ with $u \in U, w \in W$.
Now for for (ii). Let $v \in U \cap W$. Then since $v \in U$ and $v \in W$, we can write:

$$
v=v+0(\text { where } v \in U, 0 \in W)
$$

and

$$
v=0+v(\text { where } 0 \in U, v \in W)
$$

But the expresiion $v=u+w$ is unique, hence $v=0$.

Direct Sums

(\Longleftarrow) Since $V=U+W$, we must only check unqueness. So suppose $v=u_{1}+w_{1}$ and $v=u_{2}+w_{2}$, where $u_{i}, u_{2} \in U$ and $w_{1}, w_{2} \in W$.
Then

$$
u_{1}+w_{1}=u_{2}+w_{2}
$$

and thus

$$
u_{1}-u_{2}=w_{2}-w_{1}
$$

Put $x=u_{1}-u_{2}=w_{2}-w_{1}$.
Then $x \in U$ and $x \in W$, so $x \in U \cap W=\{0\}$ and hence $x=0$. Thus $u_{1}=u_{2}$ and $w_{1}=w_{2}$.

Idempotence

Definition

Let $p \in L(V, V)$. Then p is said to be idempotent if $p^{2}=p$.

Lemma

Let $p \in L(V, V)$ be idempotent, $W=R(p)$ and $U=N(p)$.
Then $V=U \oplus W$.

Proof.

We first show that $V=U+W$. Let $v \in V$. Then $v=(v-p(v))+p(v)$.
By definition, $p(v) \in R(p)=W$. Also, $p(v-p(v))=p(v)-p^{2}(v)$
$=p(v)-p(v)=0$. Hence $v-p(v) \in N(p)=U$.
Now we show $U \cap W=N(p) \cap R(p)$. Then since $v \in R(p)$ we have $v=p\left(v^{\prime}\right)$ for some $v^{\prime} \in V$. And, since $v \in N(p)$ we have $p(v)=0$. $p^{2}\left(v^{\prime}\right)=0$.
But $0=p^{2}\left(v^{\prime}\right)=p\left(v^{\prime}\right)=v$ and thus $v=0$.

Direct Sum and Idempotence

Proposition

Every direct sum decomposition arises in this way.
Proof. Let $V=U \oplus W$.
Define $p: V \longrightarrow V$ by

$$
p(u+w) \longmapsto w .
$$

The $p^{2}=p$ and $R(p)=W, N(p)=U$.
Note: We can also define $q: V \longrightarrow V$ by

$$
q(u+w) \longmapsto u .
$$

Lemma

(i) $p \circ q=0$
(ii) $p+q=I$

Proof.

(i) Let $v=u+w$. Then

$$
(p \circ q)(v)=(p \circ q)(u+w)=p(q(u+w))=p(u)=0 .
$$

(ii) Let $v=u+w$. Then
$(p+q)(v)=(p+\operatorname{circq})(u+w)=p(u+w)+q(u+w)=w+u=v$.
p and q are called the projections associated to the direct sum decomposition $V=U \oplus W$.

Orthogonal Direct Sums

Suppose now $(V,()$,$) is an inner product space and U \subset V$ is a subspace. Define the orthogonal complement:

$$
U^{\perp}:=\{v \in V:(u, v)=0, \text { all } u \in U\} .
$$

Lemma

U^{\perp} is a subspace.
Proof. First $0 \in U^{\perp}$ since $(u, 0)=0$ for all $u \in U$. Now suppose v_{1}, $v_{2} \in U^{\perp}$. Then

$$
\left(u, v_{1}+v_{2}\right)=\left(u, v_{1}\right)+\left(u, v_{2}\right)=0+0 \text { for all } u \in U
$$

and thus $v_{1}+v_{2} \in U^{\perp}$.
Finally, if $c \in \mathbb{R}$ and $v \in U^{\perp}$ then

$$
(u, c v)=c(u, v)=c \cdot 0=0 \text { for all } u \in U .
$$

and thus $c v \in U^{\perp}$.

Orthogonal Direct Sums

Proposition

Let $(V,()$,$) be an inner product space and U \subseteq V$ a subspace. The given an orthogonal basis $\mathscr{B}_{U}=\left\{u_{1}, \ldots, u_{k}\right\}$ for U, it can be extended to an orthonormal basis $\mathscr{B}=\left\{u_{1}, \ldots, u_{n}\right\}$ for V.

Proof. First, extend \mathscr{B}_{U} to a basis for V, $\mathscr{B}^{\prime}=\mathscr{B}_{U}=\left\{u_{1}, \ldots, u_{k}, v_{1}, \ldots, v_{n-k}\right\}$. Now apply Gram-Schmidt. Since $\left\{u_{1}, \ldots, u_{k}\right\}$ is already an orthonormal set, they are left fixed (this is a property of Gram-Schmidt). Thus the resulting basis is an orthonormal extension of the basis \mathscr{B}_{U}.

The following lemmas are a consequence of this proposition.

Lemma

Given $U \subset V$, there is an orthonormal basis for V, $\mathscr{B}=\left\{u_{1}, \ldots, u_{k}, u_{k+1}, \ldots, u_{n}\right\}$ so that

$$
\begin{gathered}
u_{i} \in U \text { for } 1 \leq k \\
u_{i} \in U^{\perp} \text { for } k+1 \leq n .
\end{gathered}
$$

Proof. Take a basis for $U, \mathscr{B}^{\prime}=\left\{v_{1}, \ldots, v_{k}\right\}$ and apply Gram-Schmidt to get an orthonormal basis $\mathscr{B}_{U}=\left\{u_{1}, \ldots, u_{k}\right\}$ for U.

Lemma

Given $U \subset V$ and a basis $\mathscr{B}=\left\{u_{1}, \ldots, u_{k}, u_{k+1}, \ldots, u_{n}\right\}$ as above, $\mathscr{B}_{U^{\perp}}=\left\{u_{k+1}, \ldots, u_{n}\right\}$ is a basis for U^{\perp}.

Proof. First, $S\left(u_{k+1}, \ldots, u_{n}\right) \subset U^{\perp}$ is clear. Now we claim $U^{\perp} \cap U=\{0\}$. Suppose $U^{\perp} \cup U$. Then $(u, u)=0$, hence $u=0$. Thus, $U^{\perp} \cap S\left(u_{1}, \ldots, u_{k}\right)=\{0\}$ and so $S\left(u_{k+1}, \ldots, u_{n}\right)=U^{\perp}$.
Finally, any subset of a basis is linearly independent.

Corollary

$U \cap U^{\perp}=\{0\}$.

Lemma

$V=U \oplus U^{\perp}$.
Proof. It remains to show that $V=U+U^{\perp}$. But since we have a basis for $V, \mathscr{B}=\left\{u_{1}, \ldots, u_{k}, u_{k+1}, \ldots, u_{n}\right\}$ with

$$
\begin{gathered}
u_{i} \in U \text { for } 1 \leq k \\
u_{i} \in U^{\perp} \text { for } k+1 \leq n,
\end{gathered}
$$

this is clear.

Corollary
$\operatorname{dim} V=\operatorname{dim} U+\operatorname{dim} U^{\perp}$.

Lemma

$\left(U^{\perp}\right)^{\perp}=U$.
Proof. $U \subset\left(U^{\perp}\right)^{\perp}$ is clear and since they are both subspaces of V, with the same dimension, $U=\subset\left(U^{\perp}\right)^{\perp}$.

Proposition

Suppose ($V,($,$)) is an inner product space and V=U \oplus W$ is a direct sum decomposition (not necessarily orthogonal). Let p_{U} be the associated projection. Then $W=U^{\perp}$ if and only if

$$
(*)\left(p_{U} v_{1}, v_{2}\right)=\left(v_{1}, p_{U} v_{2}\right) \text { all } v_{1}, v_{2} \in V .
$$

Proof. Let $u \in U, w \in W$.
(\Longleftarrow) Suppose (*) holds. Then

$$
(u, w)=\left(p_{U u}, w\right)=\left(u, p_{U} w\right)=(u, 0)=0 .
$$

(\Longrightarrow) Suppose $V=U \oplus W$ is orthogonal. Let $v_{1}, v_{2} \in V$. Then $v_{1}=u_{1}+w_{1}$ and $v_{2}=u_{2}+w_{2}$ (uniquely) with $u_{1}, u_{2} \in U, w_{1}$, $w_{2} \in W$.
Then

$$
\begin{aligned}
\left(p_{U} v_{1}, v_{2}\right) & =\left(P_{U}\left(u_{1}+w_{1}\right), u_{2}+w 2\right)=\left(u_{1}, u_{2}+w_{2}\right) \\
& =\left(u_{1}, u_{2}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\left(v_{1}, p_{U} v_{2}\right) & =\left(u_{1}+w 1, P_{U}\left(u_{2}+w_{2}\right)\right)=\left(u_{1}+w_{1}, u_{2}\right) \\
& =\left(u_{1}, u_{2}\right)
\end{aligned}
$$

M-Fold Direct Sums

Definition

Let $U_{1}, U_{2}, \ldots, U_{m}$ be subspaces of V. Then V is the direct sum of U_{1}, U_{2}, \ldots, U_{m}, written

$$
V=U_{1} \oplus U_{2} \oplus \ldots \oplus U_{m}
$$

if every $v \in V$ may be written as

$$
v=u_{1}+u_{2}+\ldots+u_{m} \text { with } u_{i} \in U_{i}, 1 \leq i \leq m .
$$

Proposition

$V=U_{1} \oplus U_{2} \oplus \ldots \oplus U_{m}$ if and only if
(i) $V=U_{1}+U_{2}+\ldots+U_{m}$
(ii) $U_{i} \cap\left\{U_{1}+\ldots+\hat{U}_{i}+\ldots+U_{m}\right\}=\{0\}$ for $i \leq i \leq m$ (where hat signifies that this term has been omitted.)

M-Fold Direct Sums

Proof.

(\Longrightarrow) (i) is clear since every $v \in V$ can be expressed

$$
v=u_{1}+u_{2}+\ldots+u_{m} \text { where } u_{i} \in U_{i}, 1 \leq i \leq m
$$

(ii) Fix i with $1 \leq i \leq m$. Let $v \in U_{i} \cap\left\{u_{1}+\ldots+\hat{u}_{i}+\ldots+u_{m}\right\}$. Then $v=0+\ldots+0+\hat{u}_{i}+0+\ldots+0=u_{1}+\ldots+u_{i-1}+0+u_{i+1}+\ldots+u_{m}$ and hence $u_{j}=0,1 \leq j \leq m$. So $v=0$. (\Longleftarrow) Suppose $u_{1}+u_{2}+\ldots+u_{m}=u_{1}^{\prime}+u_{2}^{\prime}+\ldots+u_{m}^{\prime}$. Fix i with $1 \leq i \leq m$. Then
$u_{i}-u_{i}^{\prime}=\left(u_{1}^{\prime}-u_{1}\right)+\ldots+\left(u_{i}^{\prime}-u_{i}\right)+\left(u_{i+1}^{\prime}-u_{i+1}\right)+\ldots+\left(u_{m}^{\prime}-u_{m}\right)$.
Set $v=u_{i}-u_{i}^{\prime}$. Then $v \in U_{i}$ and $v \in U_{1}+\ldots+\hat{U}_{i}+\ldots+U_{m}$, hence $v=0$ and $u_{i}=\hat{u}_{i}^{\prime}$. This is true for each i, hence the expression $v=u_{1}+\ldots+u_{m}$ is unique.

Projection

Definition

Given $V=U_{1} \oplus U_{2} \oplus \ldots \oplus U_{m}$, define the projection $P_{i} \in L(V, V)$ by

$$
P_{i}\left(u_{1}+u_{2}+\ldots+u_{i}+\ldots+u_{m}\right)=u_{i} .
$$

Hence

$$
\begin{aligned}
R\left(p_{i}\right) & =U_{i} \\
N\left(p_{i}\right) & =U_{1} \oplus \ldots \oplus \hat{U}_{i} \oplus \ldots \oplus U_{m}
\end{aligned}
$$

Lemma

(i) $p_{i} \circ p_{j}=0, i \neq j$.
(ii) $p_{1}+p_{2}+\ldots+p_{m}=I$.

Proof. Same as for when $m=2$.

