Lecture 12: Direct Sums and Projections

This lecture comes from the text, pages 195-198.

Direct Sums

Definition

Let V be a vector space and U and W be subspaces. Then V is said to be the **direct sum** of U and W, written $V=U\oplus W$, if every vector $v\in V$ has the unique expression

$$v = u + w, u \in U, w \in W.$$

Some more definitions:

Definition

 V is said to be the sum of U and W is every vector $v \in V$ has at least on expression

$$v = u + w, u \in U, w \in W.$$

In this case, we write V = U + W.

Definition

U and W are said to be independent if $U \cap W = \{0\}$.

Direct Sums

Lemma

Let V be a vector space, $U, W \subseteq V$ subspaces. Then $V = U \oplus W$ if and only if

- (i) V = U + W
- (ii) $U \cap W = \{0\}.$

Proof. (\Longrightarrow) (i) is clear since every $v \in V$ can be written (uniquely) as v=u+w with $u \in U$, $w \in W$.

Now for for (ii). Let $v \in U \cap W$. Then since $v \in U$ and $v \in W$, we can write:

$$v = v + 0 \text{ (where } v \in U, 0 \in W)$$

and

$$v = 0 + v \text{ (where } 0 \in U, v \in W)$$

.

But the expresiion v = u + w is unique, hence v = 0.

Direct Sums

 (\longleftarrow) Since V=U+W, we must only check unqueness. So suppose $v=u_1+w_1$ and $v=u_2+w_2$, where $u_i,\,u_2\in U$ and $w_1,\,w_2\in W$. Then

$$u_1 + w_1 = u_2 + w_2$$

and thus

$$u_1 - u_2 = w_2 - w_1$$

.

Put
$$x = u_1 - u_2 = w_2 - w_1$$
.

Then $x \in U$ and $x \in W$, so $x \in U \cap W = \{0\}$ and hence x = 0. Thus $u_1 = u_2$ and $w_1 = w_2$.

Idempotence

Definition

Let $p \in L(V, V)$. Then p is said to be idempotent if $p^2 = p$.

Lemma

Let $p \in L(V, V)$ be idempotent, W = R(p) and U = N(p). Then $V = U \oplus W$.

Proof.

We first show that V=U+W. Let $v\in V$. Then v=(v-p(v))+p(v). By definition, $p(v)\in R(p)=W$. Also, $p(v-p(v))=p(v)-p^2(v)=p(v)-p(v)=0$. Hence $v-p(v)\in N(p)=U$.

Now we show $U\cap W=N(p)\cap R(p)$. Then since $v\in R(p)$ we have v=p(v') for some $v'\in V$. And, since $v\in N(p)$ we have p(v)=0. But $0=p^2(v')=p(v')=v$ and thus v=0.

Direct Sum and Idempotence

Proposition

Every direct sum decomposition arises in this way.

Proof. Let $V = U \oplus W$.

Define $p:V\longrightarrow V$ by

$$p(u+w) \longmapsto w$$
.

The
$$p^2=p$$
 and $R(p)=W$, $N(p)=U$.

Note: We can also define $q:V\longrightarrow V$ by

$$q(u+w) \longmapsto u$$
.

Lemma

- (i) $p \circ q = 0$
- (ii) p+q=I

Proof.

(i) Let v = u + w. Then

$$(p \circ q)(v) = (p \circ q)(u + w) = p(q(u + w)) = p(u) = 0.$$

(ii) Let v = u + w. Then

$$(p+q)(v) = (p+circq)(u+w) = p(u+w)+q(u+w) = w+u = v.$$

p and q are called the projections associated to the direct sum decomposition $V=U\oplus W.$

Orthogonal Direct Sums

Suppose now $(V,(\ ,\))$ is an inner product space and $U\subset V$ is a subspace. Define the orthogonal complement:

$$U^{\perp} := \{ v \in V : (u, v) = 0, \text{ all } u \in U \}.$$

Lemma

 U^{\perp} is a subspace.

Proof. First $0 \in U^{\perp}$ since (u, 0) = 0 for all $u \in U$. Now suppose v_1 , $v_2 \in U^{\perp}$. Then

$$(u, v_1 + v_2) = (u, v_1) + (u, v_2) = 0 + 0 \text{ for all } u \in U$$

and thus $v_1 + v_2 \in U^{\perp}$.

Finally, if $c \in \mathbb{R}$ and $v \in U^{\perp}$ then

$$(u, cv) = c(u, v) = c \cdot 0 = 0 \text{ for all } u \in U.$$

and thus $cv \in U^{\perp}$.

Orthogonal Direct Sums

Proposition

Let (V, (,)) be an inner product space and $U \subseteq V$ a subspace. The given an orthogonal basis $\mathcal{B}_U = \{u_1, \ldots, u_k\}$ for U, it can be extended to an orthonormal basis $\mathcal{B} = \{u_1, \ldots, u_n\}$ for V.

Proof. First, extend \mathcal{B}_U to a basis for V, $\mathcal{B}'=\mathcal{B}_U=\{u_1,\ldots,u_k,v_1,\ldots,v_{n-k}\}$. Now apply Gram-Schmidt. Since $\{u_1,\ldots,u_k\}$ is already an orthonormal set, they are left fixed (this is a property of Gram-Schmidt). Thus the resulting basis is an orthonormal extension of the basis \mathcal{B}_U .

The following lemmas are a consequence of this proposition.

Lemma

Given $U \subset V$, there is an orthonormal basis for V, $\mathscr{B} = \{u_1, \ldots, u_k, u_{k+1}, \ldots, u_n\}$ so that $u_i \in U$ for $1 \le k$

$$u_i \in U^{\perp} \text{ for } k+1 \leq n.$$

Proof. Take a basis for U, $\mathscr{B}' = \{v_1, \ldots, v_k\}$ and apply Gram-Schmidt to get an orthonormal basis $\mathscr{B}_U = \{u_1, \ldots, u_k\}$ for U.

Lemma

Given $U \subset V$ and a basis $\mathscr{B} = \{u_1, \ldots, u_k, u_{k+1}, \ldots, u_n\}$ as above, $\mathscr{B}_{U^{\perp}} = \{u_{k+1}, \ldots, u_n\}$ is a basis for U^{\perp} .

Proof. First, $S\left(u_{k+1},\,\ldots,\,u_n\right)\subset U^\perp$ is clear. Now we claim $U^\perp\cap U=\{0\}.$ Suppose $U^\perp\cup U.$ Then $(u,\,u)=0$, hence u=0. Thus, $U^\perp\cap S\left(u_1,\,\ldots,\,u_k\right)=\{0\}$ and so $S\left(u_{k+1},\,\ldots,\,u_n\right)=U^\perp.$ Finally, any subset of a basis is linearly independent.

Corollary

$$U\cap U^\perp=\{0\}.$$

Lemma

$$V = U \oplus U^{\perp}$$
.

Proof. It remains to show that $V=U+U^{\perp}$. But since we have a basis for V, $\mathscr{B}=\{u_1,\ldots,u_k,\,u_{k+1},\ldots,u_n\}$ with

$$u_i \in U$$
 for $1 \le k$

$$u_i \in U^{\perp}$$
 for $k+1 \leq n$,

this is clear.

Corollary

 $\dim V = \dim U + \dim U^{\perp}.$

Lemma

$$(U^{\perp})^{\perp} = U.$$

Proof. $U\subset \left(U^\perp\right)^\perp$ is clear and since they are both subspaces of V, with the same dimension, $U=\subset \left(U^\perp\right)^\perp$.

Proposition

Suppose $(V,\,(\,,\,))$ is an inner product space and $V=U\oplus W$ is a direct sum decomposition (not necessarily orthogonal). Let p_U be the associated projection. Then $W=U^\perp$ if and only if

$$(*)(p_Uv_1, v_2) = (v_1, p_Uv_2) \ all \ v_1, v_2 \in V.$$

Proof. Let $u \in U$, $w \in W$. (\Longleftrightarrow) Suppose (*) holds. Then

$$(u, w) = (p_{Uu}, w) = (u, p_{U}w) = (u, 0) = 0.$$

$$(\Longrightarrow)$$
 Suppose $V=U\oplus W$ is orthogonal. Let $v_1,\,v_2\in V.$ Then $v_1=u_1+w_1$ and $v_2=u_2+w_2$ (uniquely) with $u_1,\,u_2\in U,\,w_1,\,w_2\in W.$

Then

$$(p_U v_1, v_2) = (P_U(u_1 + w_1), u_2 + w_2) = (u_1, u_2 + w_2)$$

= $(u_1, u_2),$

and

$$(v_1, p_U v_2) = (u_1 + w_1, P_U(u_2 + w_2)) = (u_1 + w_1, u_2)$$

= (u_1, u_2) . \square

M-Fold Direct Sums

Definition

Let U_1 , U_2 , ..., U_m be subspaces of V. Then V is the direct sum of U_1 , U_2 , ..., U_m , written

$$V = U_1 \oplus U_2 \oplus \ldots \oplus U_m$$

if every $v \in V$ may be written as

$$v = u_1 + u_2 + \ldots + u_m \text{ with } u_i \in U_i, 1 \le i \le m.$$

Proposition

 $V = U_1 \oplus U_2 \oplus \ldots \oplus U_m$ if and only if

- (i) $V = U_1 + U_2 + \ldots + U_m$
- (ii) $U_i \cap \{U_1 + \ldots + \hat{U}_i + \ldots + U_m\} = \{0\}$ for $i \leq i \leq m$ (where hat signifies that this term has been omitted.)

M-Fold Direct Sums

Proof.

 (\Longrightarrow) (i) is clear since every $v \in V$ can be expressed

$$v = u_1 + u_2 + \ldots + u_m$$
 where $u_i \in U_i, 1 \le i \le m$.

(ii) Fix
$$i$$
 with $1 \le i \le m$. Let $v \in U_i \cap \{u_1 + \ldots + \hat{u}_i + \ldots + u_m\}$. Then

$$v = 0 + \ldots + 0 + \hat{u}_i + 0 + \ldots + 0 = u_1 + \ldots + u_{i-1} + 0 + u_{i+1} + \ldots + u_m$$

and hence $u_j = 0$, $1 \le j \le m$. So v = 0.

(
$$\iff$$
) Suppose $u_1+u_2+\ldots+u_m=u'_1+u'_2+\ldots+u'_m$. Fix i with $1\leq i\leq m$. Then

$$u_i - u'_i = (u'_1 - u_1) + \ldots + (u'_i - u_i) + (u'_{i+1} - u_{i+1}) + \ldots + (u'_m - u_m).$$

Set $v=u_i-u_i'$. Then $v\in U_i$ and $v\in U_1+\ldots+\hat{U}_i+\ldots+U_m$, hence v=0 and $u_i=\hat{u}_i'$. This is true for each i, hence the expression $v=u_1+\ldots+u_m$ is unique.

Projection

Definition

Given $V = U_1 \oplus U_2 \oplus \ldots \oplus U_m$, define the projection $P_i \in L(V, V)$ by

$$P_i(u_1 + u_2 + \ldots + u_i + \ldots + u_m) = u_i.$$

Hence

$$R(p_i) = U_i$$

 $N(p_i) = U_1 \oplus \ldots \oplus \hat{U}_i \oplus \ldots \oplus U_m$

Lemma

- (i) $p_i \circ p_j = 0$, $i \neq j$.
- (ii) $p_1 + p_2 + \ldots + p_m = I$.

Proof. Same as for when m=2.