
Lecture 13: The Existence of the Determinant

I am not going to follow the text but I will prove all the results in the
text (Chapter 5).



You already know the formula for the determinant of a 2 by 2 matrix

det

(
a b
c d

)
= ad− bc.

There is also a simple formula for the determinant of 3 by 3 matrix.

det

 a b c
d e f
h i j

 = hec+ dbj + aif − aej − bfh− cdi.

The first row in the formula goes diagonally \ and the second row goes /.



In this lecture we will prove the following

Theorem

There exits a unique real-valued Mn(R) of n by n matrices satisfying

(i) det (In) = 1.

(ii) det (A) is linear in the rows of A.

(iii’) If two rows of A are interchanged the determinant is multiplied by
−1. This is a type 1 elementary row operation.

(iv) If the i-th row Ri is replaced by Ri + cRj where Rj is a different
row i 6= j, then the determinant is unchanged. This is a type 2
elementary row operation.

(v) If the i-th row Ri is replaced by cRi then the determinant is
multiplied by c. This is a type 3 elementary row operation.



Remark: There is a weaker version of (iii) which we will prove first:
(iii) If two rows of A are the same then det (A) = 0.

Exercise: Prove that (iii) −→ (iii’). Hint: Interchange the two rows that
are equal.



Example of Axiom (ii)

We give an example of what (ii) says

(ii) Linear in the Second Row

det

 1 2 4
2 · 5 2 · 6 2 · 3
2 −1 0

 = 2 · det

 1 2 4
5 6 3
2 −1 0


and

det

 1 2 4
3 + 5 4 + 6 2 + 3
2 −1 0

 = det

 1 2 4
3 4 2
2 −1 0

+det

 1 2 4
5 6 3
2 −1 0


So if you fix n− 1 rows det is a linear function of the remaining row.



Proof of Theorem

We now prove the theorem.

First we prove uniqueness.
Case 1
A has rank n. Then we can find a sequence of elementary row operations
E1, E2 . . . , Ek such that

(E1, E2 . . . , Ek) (A) = In

Since we know how he determinant changes each time we apply an
elementary row operation and we know det (In) = 1, we find that
det (A) is unique in case A has full rank.



Case 2
Suppose rank A < n. Then we can find a sequence of elementary row
operations E1, E2 . . . , Em so that

(E1, E2 . . . , Em) (A) = B,

where the last row of B is the zero row.
But if a matrix B has a row R of zeroes, then we can use axiom (v) to
show

det (B) = 0.

Let E be the operation that multiplies row R by -1. Then by axiom (v)

det (E(B)) = − det (B).

But since - 0 = 0, E(B) is the same matrix as B so

det (E(B)) = det (B).

Hence det (B) = −detB so det (B) = 0.



Example 1

The determinant of a diagonal matrix

A =

 λ1 0 0
0 λ2 0
0 0 λ3


We apply axiom (v) three times to obtain

det(A) = λ1λ2λ3 det (I3).

Hence by axiom (i) we have

det(A) = λ1λ2λ3

and the determinant of a diagonal matrix is the product of its diagonal
entries.



Example 2

The determinant of an upper triangular matrix is the product of its
diagonal entries

A =

 λ1 a h
0 λ2 c
0 0 λ3


If λ3 = 0 then det (A) = 0. If λ3 is not zero, do two elementary
operations of type 2 to get

A =

 λ1 a 0
0 λ2 0
0 0 λ3


If λ2 = 0, then det (A) = 0. Otherwise, do another elementary row
operations of type 2 to get

A =

 λ1 0 0
0 λ2 0
0 0 λ3





Existence of the Determinant

Let Aij be the submatrix obtained from A by deleting the i-th row and
the j-th column.

We define det (A) inductively. Assume det (A) exists satisfying (i)-(v) for
n− 1 by n− 1 matrices. Let A be an n by n matrix.

Definition

det (A) =

n∑
i=1

(−1)i−1aij det (Ai1) (∗)

so we are expanding by the first column.



We will now verify (i), (ii), (iii), (iv), (v). In fact (i) and (v) are clear by
induction. We will prove (v) on pages 10-13.

We begin with (ii)–this is the hardest one.

Write

A =


R1

R2

...
Rn

 ,

where R1 is the first row, R2 the second row, etc.



The Matrix of a Linear Transformation

Suppose we multiply the first row by c so we get

B =


cR1

R2

...
Rn

 .

Let Bij be the result of removing the i-th row and the j-th column from
B.

We must show

n∑
i=1

(−1)i−1bi1 det (Bi1) = c

n∑
i=1

(−1)i−1ai1 det (Ai1) (∗∗)

This is the same as axiom (v).



The Matrix of a Linear Transformation

We use the following notation: if R = (r1, r2, . . . , rn) is a row vector
then R(1) = (r2, r3, . . . , rn).

We will show each term on the left of (∗∗) is c times its counterpart on
the right; that is

bi1 det (Bi1 = cai1 det (Ai1)

There are two cases, i = 1 and i > 1. We first do i = 1. We have
b11 = ca11.

Also

B11 =


R

(1)
2

R
(1)
3
...

R
(1)
n

 .

Hence det (B11) = det (A11), so

b11 det (B11) = ca11 det (A11)



Now look at the second term b21 det (B21) in (∗∗). Only the first row of
A gets changed so

b21 = a21.

Also

B21 = B11 =


R

(1)
1

R
(1)
2
...

R
(1)
n

 , and A21 = B11 =


R

(1)
1

R
(1)
2
...

R
(1)
n

 .

Hence by induction
det (B21) = cdet (A21).

We obtain
b21 det (B21) = ca21 det (A21).



The same argument works for all terms bi1 det (Bi1) for all i ≥ 2.

Also the same argument works if we put

B =


cR1

...
Ri

...
Rn

 .

To complete the proof of (ii) we have to prove that in

A =


...

R+ S
...

 then

det (A) = det


...
R
...

+ det


...
S
...





Again, we do only the case of the first row. Put R = (r1, r2, . . . , rn) and
S = (s1, s2, . . . , sn) so

A =


R+ S
R2

...
Rn

 .

Put

B =


R
R2

...
Rn

 and C =


S
R2

...
Rn

 .

So we want to prove

det (A) = det (B) + det (C).



We claim that we again get term-wise equality in the formula (∗). So we
have to prove

ai1 det (Ai1) = bi1 det (Bi1) + ci1 det ci1 (∗ ∗ ∗)

We first take i = 1. Then we have

a11 = r1 + s1, b11 = r1 and c11 = s1.

Also, A11 = B11 = C11 because A, B, C coincide except for the first
row. Hence the left-hand side in (∗ ∗ ∗) is (r1 + s1) det (A11) and the
right-hand side is r1 det (A11) + s1 det (A11) so the first terms of (∗ ∗ ∗)
agree.



We now consider the second term of (∗ ∗ ∗) so i = 2. So we omit the
second rows of A, B, C. Now we have

a21 = b21 = c21

and

A21 =


R(1) + S(1)

R
(1)
3
...

R
(1)
n



B21 =


R(1)

R
(1)
3
...

R
(1)
n

 and S21 =


R(1)

R
(1)
3
...

R
(1)
n


Hence, the first row of A21 is the sum of the first row of B21 and the
first row of C21. Hence by induction

det (A21) = det (B21) + det (C21)



The same argument works for all i ≥ 2.

Linearity allows us to operate one row at a time with other rows fixed as
we will see on page 19.

It remains to prove (iii) and (iv). We will show (iii) =⇒ (iv) =⇒ (iii).

We now prove (iii). We will do the special case where the first two rows
are equal so

A =


R
R
R3

...
Rn





Recall the definition of det.

det (A) =

n∑
i=1

(−1)i−1ai1 det (Ai1) (∗)

We will now show each term in (∗) is zero except for the first two terms.
Indeed, if i ≥ 2.

A =


R1

R1

...
R1

n


then Ai1 has the first two rows the same, so by induction

det (Ai1) = 0, i > 2.



Hence we are left with two terms in (∗)

det (A) = a11 det (A11)− a21 det (A21)

and

A11 = A21 =


R(1)

R
(1)
3
...

R
(1)
n


Hence a11 det (A11) = a21 det (A21) and we have proved (iii).



We will now prove (iii) implies (iv). Again, we will do a special case.
Suppose we add c times R1 to R2. Then, by (ii), we have

det


R1

R2 + cR1

...
Rn

 = det


R1

R2

...
Rn

+ det


R1

cR1

...
Rn





But by axiom (v), we have

det


R1

R1

...
Rn

 = cdet


R1

R1

...
Rn


and by (iii’)

det


R1

R1

...
Rn

 = 0

Exercise: Do the general case.



Now we can prove (iii). We will prove that if we interchange R1 and R2

the determinant changes sign. We will apply (iv) four times and (ii) at
the end.

det


R1

R2

...
Rn

 = det


R1

R2 −R1

...
Rn

 = det


R1 + (R2−R1)

R2 −R1

...
Rn

 (1)

= det


R1

R2 −R1

...
Rn

 = det


R2

R2 −R1

...
Rn

 = det


R2

−R1

...
Rn

 = det


R2

R1

...
Rn

(2)

Exercise: Do the general case.

We have proved that det exist.



Problem

What does the above proof have to do with the following identity?(
0 1
1 0

)
=

(
1 0
0 −1

)(
1 0
−1 1

)(
1 1
0 1

)(
1 0
−1 1

)




