Lecture 15: Permutations

Permutations

The properties of permutations are discussed in the text, Chapter 9, page 156-160. The notion of the sign of a permutation is closely linked to that of the determinant of a matrix. The set of permutaions of the set $\{1,2, \ldots, n\}$ forms a group usually denoted Σ_{n}.
We will first discuss the permutations of any set X.

Definition

Let X be any set. Then the group of permutations of X, denoted $\Sigma(X)$, is the set of bijective (i.e., one-to-one and onto) mappings from X to itself.
$\Sigma(X)$ comes with a noncommutative associative binary opertation, namely composition

$$
(f, g) \longrightarrow f \circ g
$$

There is a unit element, the identity map $I=I_{X}$, and every element f has an inverse for the operation \circ, namely the inverse mapping f^{-1} to f , that is

$$
f \circ f^{-1}=f^{-1} \circ f=I
$$

We will henceforth take $X=\{1,2, \ldots, n\}$ and abbreviate $\Sigma\{1,2, \ldots, n\}$ to Σ_{n}.
A permutation σ will often be described by

$$
\sigma=\left(\begin{array}{ccccc}
1 & 2 & 3 & \ldots & n \\
j_{1} & j_{2} & j_{3} & \ldots & j_{n}
\end{array}\right)
$$

where $\sigma(1)=j_{1}, \sigma(2)=j_{2}, \ldots, \sigma(n)=j_{n}$.

So

$$
\begin{gathered}
\Sigma_{2}=\left\{\left(\begin{array}{ll}
1 & 2 \\
1 & 2
\end{array}\right), \quad\left(\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right)\right\} \\
\Sigma_{3}=\left\{\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 2 & 3
\end{array}\right), \quad\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 3
\end{array}\right), \quad\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 2 & 1
\end{array}\right)\right. \\
\left.\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 3 & 2
\end{array}\right), \quad\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right), \quad\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 1 & 2
\end{array}\right)\right\}
\end{gathered}
$$

Definition

A transposition is a permutation that fixes all but two elements of $\{1,2, \ldots, n\}$ and interchanges the remaining two elements.

We let $\tau_{i j}$ or $(i j)$ be the transposition that interchanges i and j. Note that

$$
\tau_{i j}^{1}=\tau_{i j} \cdot \tau_{i j}=I
$$

We say that $\tau_{i j}$ has order 2 . We will say that I is also a transposition.

Multiplying Permutation

There is a tricky point. We define $\sigma \cdot \sigma_{2}=\sigma_{1} \circ \sigma_{2}$ so first do σ_{2}, then do σ_{1} :

$$
\sigma_{1}=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 3
\end{array}\right) \text { and } \sigma_{2}=\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 3 & 2
\end{array}\right)
$$

Let's compute $\sigma_{1} \circ \sigma_{2}$ and $\sigma_{2} \circ \sigma_{1}$. By definition (text, page 159),

$$
\sigma_{1} \circ \sigma_{2}(\alpha)=\sigma_{1}\left(\sigma_{2}(\alpha)\right)
$$

Multiplying Permutation

So

$$
\begin{aligned}
\sigma_{1} \circ \sigma_{2}(1) & =\sigma_{1}\left(\sigma_{2}(1)\right)=\sigma(1)=2 \\
\sigma_{1} \circ \sigma_{2}(2) & =\sigma_{1}\left(\sigma_{2}(2)\right)=\sigma(3)=3 \\
\sigma_{1} \circ \sigma_{2}(3) & =\sigma_{1}\left(\sigma_{2}(3)\right)=\sigma(2)=1
\end{aligned}
$$

A better way to do this

$$
\left.\begin{array}{lll}
1 & 2 & 3 \\
1 & 3 & 2
\end{array}\right\} \sigma_{2}
$$

The key point: for $\sigma_{1} \circ \sigma_{2}$, you apply σ_{2} first.

Permutation Matrices

Let V be a vector space with basis $\left\{v_{1}, \ldots, v_{n}\right\}$. Then we can map Σ_{n} into $L(V, V)$ by $\sigma \longrightarrow T) \sigma$ where

$$
T_{\sigma}\left(v_{i}\right)=v_{\sigma(i)}, q u a d 1 \leq i \leq n
$$

Lemma

$\sigma \longrightarrow T) \sigma$ satisfies

$$
T_{\sigma \tau}=T_{\sigma} \circ T_{\tau}, \quad \sigma \tau \in \Sigma_{n}
$$

Proof. For each 1, $2, \ldots$, n, we have

$$
\begin{aligned}
T_{\sigma} \circ T_{\tau}\left(v_{i}\right) & =T_{\sigma}\left(T_{\tau}\left(v_{i}\right)\right) \\
& =T_{\sigma}\left(v_{\tau(i)}\right) \\
& =T_{\sigma\left(v_{\tau(i)}\right)} \\
& =T_{\sigma v_{\tau(i)}} \\
& =T_{\sigma \tau}\left(v_{i}\right)
\end{aligned}
$$

The matrix M_{σ} of T_{σ} relative to the basis $\left\{v_{1}, \ldots, v_{n}\right\}$ has one 1 and $n-1$ zeroes in every row and column. $n=3$

$$
M_{(12)}=\left(\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

and

$$
M_{(123)}=\left(\begin{array}{ccc}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)
$$

Here (123) means the permutation

$$
\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right)
$$

Lemma

Every permutation is a product of transpositions.
Proof. By inducition on n.
It is true for $n=1$ (and $n=2$). Suppose it's true for Σ_{n}. Let $\sigma \in \Sigma_{n+1}$. Then

$$
\sigma(n+1)=i
$$

for some $i \in\{1,2, \ldots, n\}$. Put $\sigma^{\prime}=\tau_{i, n+1} \cdot \sigma$. Then, $\sigma^{\prime}(n+1)=n+1$. So we may think of σ^{\prime} as a element of Σ_{n}. Hence by induction is a product of transposition (in $\{1,2, \ldots, n\}$)

$$
\sigma^{\prime}=\prod_{(i, j)} \tau_{i j}
$$

But (since $\sigma_{i, n+1}^{-1}=\sigma_{i, n+1}$) we have

$$
\sigma^{\prime}=\sigma_{i, n+1} \circ \sigma \Longrightarrow \sigma_{i, n+1} \circ \sigma^{\prime}=\tau_{i, n+1} \circ \prod_{(i, j)} \tau_{i j}
$$

Remark: It is unfortunately true that there are many ways to factor permutation to into transposition.
Consider the permutation

$$
\sigma=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right)
$$

Then

$$
\sigma=(13)(12)
$$

and

$$
\sigma=(12)(23) .
$$

This causes problems in proving that $\in(\sigma)$ the sign of a permutation, is well-defined in the next theorem.

Theorem

There exits a unique mapping $\in: \Sigma_{n} \longrightarrow\{ \pm 1\}$ such that

1. $\in(\sigma \tau)=\in(\sigma) \in(\tau)$
2. $\in(1)=1$
3. If τ is a transposition, then

$$
\in(\tau)=-1 .
$$

Proof. Let σ act on \mathbb{R}^{n} by permuting the standard basis $\left\{e_{1}, \ldots, e_{n}\right\}$. Then define

$$
\in(\sigma)=\operatorname{det} M_{\sigma} .
$$

This works.

In many treatments one first proves the existence of $\in(\sigma)$ then for an n by n matrix $A=\left(a_{i j}\right)$ one defines

$$
\operatorname{det}(A)=\sum_{\sigma \in \Sigma_{n}} a_{1 \sigma(1)} a_{n \sigma(1)} \ldots a_{n \sigma(1)} \quad(*)
$$

In case

$$
A=\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right)
$$

one gets

$$
\operatorname{det}(A)=\underbrace{a_{11} a_{22}}_{\sigma=I}-a_{12} a_{21}
$$

The formula we gave in Lecture 13 for the determinant of a 3 by 3 matrix is also a special case of $(*)$.

So roughly defining the sign of a permutation is equivalent to determining the determinant of a matrix.
The definition of \in is unique. Indeed, write σ as a product of k transposition

$$
\sigma=\tau_{1} \circ \tau_{2} \circ \ldots \circ \tau_{k}
$$

Then

$$
\begin{aligned}
\in(\sigma) & =\in\left(\tau_{1}\right) \in\left(\tau_{2}\right) \ldots \in\left(\tau_{n}\right) \\
& =(-1)^{k}
\end{aligned}
$$

by (3).

