Lecture 16: Polynomials

Today we will start (adn finish) Chapter 6 . I will assume that you know how to add $(+)$ and multiply (\cdot) polynomials and know about the complex numbers \mathbb{C}.

Polynomials

We let $\mathbb{R}[x]$ denote the set of polynomials with real coefficients and $\mathbb{C}[x]$ denote the set of polynomials with complex coefficients. More generally, if F is a field we let $F[x]$ denote the set of polynomials with F coefficients.

Theorem

$(F,+, \bullet)$ is a commutative algebra.
But more is true. There is a theory of factoring polynomials into primes analogous to factoring integers into prime.

Degree of Polynomials

First recall the degree of a polynomials. If
$f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}$, the degree of the polynomiasl of $f(x)$, denoted $\operatorname{deg}(f(x))$, is the greatest integer m so that $a_{m} \neq 0$.

Proposition

Let $f(x) \neq 0$ and $g(x) \neq 0$ be $F[x]$. Then $f(x) \cdot g(x) \neq 0$ and

$$
\operatorname{deg}(f(x) \cdot g(x))=\operatorname{deg}(f(x))+\operatorname{deg}(g(x)) .
$$

Proof. Let

$$
\begin{aligned}
f(x) & =a_{m} x^{m} \ldots+a_{0} \text { with } a_{m} \neq 0 \\
g(x) & =b_{n} x^{n} \ldots+b_{0} \text { with } b_{n} \neq 0
\end{aligned}
$$

Degree of Polynomials

To calculate the degree of the product, we must only keep track of the highest degree terms in each of $f(x)$ and $g(x)$. That is
$\left(a_{m} x^{m} \ldots+a_{0}\right)\left(b_{n} x^{n} \ldots+b_{0}\right)=a_{m} b_{n} x^{m+n}+$ stricly lower order terms
Since $a_{m} b_{n} \neq 0$, $\operatorname{deg}(f(x) \cdot g(x))=m+n=\operatorname{deg}(f(x))+\operatorname{deg}(g(x))$.

Corollary

$(F,+, \bullet)$ is an integral domain. That is,

$$
f \cdot g=0 \Longleftrightarrow f=0 \text { or } g=0 .
$$

Prime Factorization of Integers

Units: The only integers that are invertible are +1 and -1 .

Definition

An integer m divides an integer n if there is some integer q so that $n=m q$. We write m / n.

The division Algorithm for Integers: Let m and n with $m \neq 0$. Then there exit integers q and r such that

$$
n=m q+r \text { and }|r|<|m| .
$$

GCD and LCM

Definition

Let m and n be integers. The greatest common divisor, written $\operatorname{gcd}(m, n)$, is the integer d such that
(1) $d>0$.
(2) d / m and d / n.
(3) If d^{\prime} / m and d^{\prime} / n then d^{\prime} / d.

There is an analagous definition for n_{1}, \ldots, n_{k} written $\operatorname{gcd}\left(n_{1}, \ldots, n_{k}\right)$.

Definition

k is said to be a common multiple of m and n is m / k and n / k. The least common multiple of m and n, written $\operatorname{lcm}(m, n$,$) is the smallest$ positive common multiple of m and n.

There is an analagous definition for n_{1}, \ldots, n_{k} written $\operatorname{lcm}\left(n_{1}, \ldots, n_{k}\right)$.

Theorem

(1) $n_{1}, n_{2}, \ldots, n_{k}$ have a unique gcd d.
(2) There exist integers $m_{1}, m_{2}, \ldots, m_{k}$ such that

$$
d=m_{1} n_{1}+m_{2} n_{2}+\ldots m_{k} n_{k}
$$

Definition

An integer p is said to be prime if
(1) $p>1$.
(2) if d / p and $d>0$, the either $d=1$ or $d=p$.

The Fundamental Theorem of Arithmetic

Theorem (The Fundamental Theorem of Arithmetic)

Every non-zero integer m has unique prime factorization

$$
m= \pm p_{1}^{e_{1}} p_{2}^{e_{2}} \ldots p_{n}^{e_{n}}
$$

Lemma (Basic)

If $p / a \cdot b$, and p is prime then either p / a or p / b.
Given m and n, you can read off the gcd and 1 cm from their prime factorizations
(1) $m=p_{1}^{e_{1}} p_{2}^{e_{2}} \ldots p_{r}^{e_{r}}$
(2) $n=q_{1}^{f_{1}} q_{2}^{f_{2}} \ldots q_{s}^{f_{s}}$
gcd: Take the product of the primes that occur in both (1) and (2), each to the power of the smaller e_{i}, f_{i}.
Icm: Take the product of the primes that occur either both (1) or (2) to the power in (1) or (2). If f_{i} appears in both (1) and (2), raise it to the larger of e_{i}, f_{i}.

Units: $f \in F[x]$ is invertible for $\cdot \Longleftrightarrow f$ is a constant.
Proof: Suppose $f \cdot g=1$. Then

$$
0=\operatorname{deg}(f \cdot g)=\operatorname{deg}(f)+\operatorname{deg}(g) \Longrightarrow \operatorname{deg}(f)=\operatorname{deg}(g)=0
$$

Remark: There are a lot more units in $F[x]$ than for the integers. We need the analogue of positive integers to get rid of units.

Definition

A polynomial is monic if the coefficient of the leading term is 1.
Note: Given a non-zero $f \in F[x]$ there is an unique unit c such that $c f$ is monic.

Definition

A polynomial g dovedes a polynomial f is there exists a polynomial ℓ such that

$$
f(x)=g(x) \ell(x)
$$

We write $g \mid f$.

Example:

$$
\begin{gathered}
\left(x^{2}+1\right) \mid\left(x^{4}-1\right) \\
\left(x^{4}-1\right)=\left(x^{2}-1\right)\left(x^{2}+1\right)
\end{gathered}
$$

The Division Algortithm for Polynomials

Let f and $g \in F[x]$ with $g \neq 0$. There exist uniquely determined polynomials Q and R called the quotient and the remainder such that

$$
f=Q g+R
$$

with $\operatorname{deg}(R)<\operatorname{deg}(g)$.

Definition

Let f and g be polynomials. A greatest common divisor, written $\operatorname{gcd} f, g$ is a polynomial
(1) d is monic.
(2) $d \mid f$ and $d \mid g$.
(3) If $d^{\prime} \mid f$ and $d^{\prime} \mid g$ then $d^{\prime} \mid d$.

Theorem (Text, 20.15)

(1) $f_{1}, f_{2}, \ldots, f_{n}$ have a unique gcd d.
(2) There exist polynomials $\ell_{1}, \ell_{2}, \ldots, \ell_{n}$ such that

$$
d(x)=\ell_{1}(x) f_{1}(x)+\ell_{2}(x) f_{2}(x)+\ldots+\ell_{n}(x) f_{n}(x)
$$

The Unique Factorization Theorem

Definition

A polynomial p is said to be prime if $p \neq 1$ and
(1) p is monic
(2) If $d \mid p$ and d is monic then either $d=1$ or $d=p$.

Theorem (The Unique Factorization Theorem)

Let $f(x) \in F[x]$ and $f=0$. Then $f(x)$ has a unique factorization

$$
f(x)=c p_{1}(x)^{e_{1}} p_{2}(x)^{e_{2}} \ldots p_{n}(x)^{e_{n}}
$$

for $c \in F, p_{i}(x)$ prime, $1 \leq i \leq n$.

The $\$ 64,000$ Question: what are primes in $F[x]$

First, we note the answer depends of F.

- $x^{2}-2$ is prime in $\mathbb{Q}[x]$, but factors as $(x-\sqrt{2})(x+\sqrt{2})$ in $\mathbb{R}[x]$.
- $x^{2}-1$ is prime in $\mathbb{R}[x]$, but factors as $(x-i)(x+i)$ in $\mathbb{C}[x]$. Of course, to justify this we need to know that $x^{2}-2$ does not have some other factorization. That is

$$
\left(x^{2}-2\right)=(x-a)(x-b) \Longleftrightarrow a= \pm \sqrt{2}
$$

This follows from the easy direction of

Theorem

$(x-a) \mid f(x) \Longleftrightarrow f(a)=0$.

Proof.

(\Longrightarrow) Is obvious. $(x-a) \mid f(x) \Longleftrightarrow f(x)=(x-a) q(x)$ for some $q(x) \in F[x]$. Then

$$
f(a)=((a)-a) q(a)=0 \cdot q(a)=0 .
$$

(\Longleftarrow) Is not clear.
If fact there is a more general result. Apply the Division Algorithm to obtain

$$
f(x)=(x-a) Q+R \quad(*)
$$

Note $\operatorname{deg}(R)<1$ so R is a constant.

In fact,
Theorem (Text, 20.13)
$R=f(a)$.
Proof. Subsitute a into both sides of $(*)$.

$$
f(a)=(a-a) Q(a)+R(a)=0 \cdot Q(a)+R(a)=R(a)=R .
$$

Describing the prime polynomials over $\mathbb{Q}[x]$ is too hard. However we can solve the problem $\mathbb{R}[x]$ and $\mathbb{C}[x]$.

Prime Polynomials in $\mathbb{R}[x]$ and $\mathbb{C}[x]$

Theorem (1)

The prime polynomials in $\mathbb{R}[x]$ are the linear polynomials $x-a, a \in \mathbb{R}$ and the quadratic polynomials $x^{2}+b x+c$ where $b^{2}-4 a c<0$.

Theorem (2)

The prime polynomials in $\mathbb{C}[x]$ are the linear polynomials $x-\alpha, \alpha \in \mathbb{C}$.

Primes in $\mathbb{C}[x]$

We will first prove Theorem 2 assuming

Theorem (The Fundamental Theorem of Algebra)

Let $f(x) \in C[x]$. Then if f is non-constant, f has a root. (In fact, it will have $\operatorname{deg}(f)$ roots if we count with multiplicity.)

Corollary
If $f(x) \in \mathbb{C}[x]$ and f is prime then $f(x)$ has degree 1 .

Every prime in $\mathbb{R}[x]$ can be factored into the product of linears and quadratics.

First, factor in $\mathbb{C}[x]$:

$$
f(x)=\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right) \ldots\left(x-\alpha_{n}\right) .
$$

Non-real roots need occur in complex conjugate pairs.

$$
f(\alpha)=0 \Longleftrightarrow \overline{f(\alpha)} \Longleftrightarrow f(\bar{\alpha})=0 .
$$

So,

$$
f(x)=\left(x-a_{1}\right) \ldots\left(x-a_{r}\right)\left(x-\beta_{1}\right)\left(x-\overline{\beta_{1}}\right) \ldots\left(x-\beta_{m}\right)\left(x-\overline{\beta_{m}}\right)
$$

Define

$$
\begin{aligned}
q_{i}(x) & =\left(x-\beta_{i}\right)\left(x-\overline{\beta_{i}}\right) \\
& =x^{2}-\left(\beta_{i}+\overline{\beta_{i}}\right) x+\beta_{i} \overline{\beta_{i}} \\
& =x^{2}-2 \operatorname{Re}\left(\beta_{i}\right) x+\left|\beta_{i}\right|^{2}
\end{aligned}
$$

Then $q_{i}(x)$ is prime in $\mathbb{R}[x]$ because it was not it would be divisible by $x-a, a \in \mathbb{R}$. So a would be a root of $q_{i}(x)$. But the only roots of $q_{i}(x)$ are β_{i} and $\overline{\beta_{i}}$.

