Lecture 17: The minimal Polynomial of a Linear Transformation

э

- ∢ ∃ ►

Subsituting a Linear Transformation into a Polynomial

Let V be a vector space over F of dimension n. $T \in L(V, V)$ and $f(x) \in F[x]$. We want to define $f(T) \in L(V, V)$.

Definition

If
$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0$$
 then

$$f(T) = a_n T^n + a_{n-1} T^{n-1} + \ldots + a_1 T + a_0 I$$

We could also evaluate at a square matrix A:

$$f(A) = a_n A^n + a_{n-1} A^{n-1} + \ldots + a_1 A + a_0 I$$

Theorem

The matrix of f(T) relative to the basis \mathscr{B} is f(A), where A is the matrix of T relative to the basis \mathscr{B} .

Let
$$\Phi_T : F[x] \longrightarrow L(V, V)$$
 be given by
 $\Phi_T(f) = f(T).$

Proposition

 Φ_T is an *F*-algebra homomorphism. Φ_T is not onto (for n \downarrow 1) and had a big kernel.

Why isn't it onto?

$$f(T)g(T) = g(T)f(T).$$

So any two elements in the image of Φ commute. So take two non-commuting elements in L(V, V) (we need n > 1 to do this.) They can not both be in the image of Φ_T .

Why does Φ_T have a big nullspace? Take any set of $n^2 + 1$ linearly independent elements of F[x], $\{f_1, f_2, \ldots, f_{n^2+1}\}$ (e.g. $1, x, x^2, \ldots, x^{n^2}$). Then

$$\{f_1(T), f_2(T), \ldots, f_{n^2+1}(T)\}$$

is a set of n^1+1 elements in $L\left(V,\,V\right)$, an n^2 dimensional vector space. Hence there is a relation

$$\sum_{i=1}^{n^2+1} c_i f_i(T) = 0, \quad c_i \neq 0.$$

Then $\sum_{i=1}^{n^2+1} c_i f_i \in \text{Ker}(\Phi_T)$ is a non-zero elements is an infinite dimensional vector space?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

We just saw $I, T, T^2, \ldots, T^{n^2}$ must be linear independent since $\dim L(V, V) = n^2$. Hence there exits scalars $a_0, a_1, \ldots, a_{n^2}$ so that

$$a_0I + a_1T + \ldots + a_{n^2}T^{n^2}$$

So $f(x) = a_0I + a_1x + \ldots + a_{n^2}x^{n^2}$ is in $\text{Ker}(\Phi_T)$. In other words, there is a linear relation between the power $I, T, T^2, \ldots, T^{n^2}$

Remark: In fact, we will see later that there is always a linear relation between the powers

$$I, T, T^2, \ldots, T^{n^2}$$

and often we can get a even smaller power k.

Fundamental Question

What is the smallest power k so that there is a nontrivial linear relation among $I,\,T,\,T^2,\,\ldots,\,T^{n^2}?$

First-there is a unique such k. Let

 $R = \{\ell : \text{ there is a linear relation among the powers } I, T, T^2, \dots, T^\ell\}$

Since $n^2 \in R$, R is nonempty.

The smallest possible is k = 1.

• If k = 0, we would have

$$a_0 T^0 = 0, \quad a_0 \neq 0.$$

◆□> ◆□> ◆三> ◆三> ● □ ● のへの

But $T^0 = I$, a contradiction.

• If k = 1, we would have

 $a_0T^0 + a_1T = 0 \iff T$ is a scalar (a multiple of)*I*.

If T is not scalar, $k \ge 2$.

Choose a minimal degree linear relation

$$a_k T^k + a_{k-1} T^{k-1} + \ldots + a_1 T + a_0 I = 0$$

Divide by a_k to make it monic:

$$T^{k} + b_{k-1}T^{k-1} + \ldots + b_{1}T + b_{0}I = 0$$

Define

$$m(x) = x^{k} + b_{k-1}x^{k-1} + \ldots + b_{1}x + b_{0}I = 0$$

so m(T) = 0.

We need

Lemma

Suppose f(x) satisfies deg(f) < k. Then

$$f(T) = 0 \iff f(x) = 0 (= the zero-polynomial).$$

Proof. By definition, k is the smallest degree so that there is a nonzero polynomial satisfying f(T) = 0.

▲ロ → ▲ 団 → ▲ 臣 → ▲ 臣 → の < ⊙

Theorem

Suppose $0 \neq f(x) \in F[x]$ satisfies f(T) = 0. Then m(x)|f(x).

Proof. By the lemma, $deg(f) \ge deg(m)$. So we can divide f by m.

f(x) = Q(x)m(x) + R(x)

with $\deg(R(x)) < \deg(m(x))$. Now evaluate

$$f(T) = Q(T)m(T) + R(T)$$

But f(T) = m(T) = 0. Hence R(T) = 0. But $\deg(R(x)) < \deg(m(x))$, so $R(T) = 0 \Longrightarrow R(x) = 0$ by the lemma.

◆□> ◆□> ◆三> ◆三> ・三> のへの

Corollary

m(x) is unique.

Proof. Suppose $m_1(x)$ is another monic polynomial of degree k so that $m_1(T) = 0$. Then $m(x)|m_1(x)$ so (since we have the same degree), $m_1(x) = cm(x)$. But since both m(x) and $m_1(x)$ are monic, we have c = 1.

Definition

m(x) is called the miniminal polynomial of the linear transformation T. Sometimes we will write m_T .

Note: It's hard to compute-it is even hard to compute $k = \deg(m_T)$. Now let $A \in M_n(F)$. We can repeat the whole theory to define

 m_A = the monic polynomial f of smallest degree such that f(A) = 0.

Theorem

Suppose $T \in L(V, V)$, $\mathscr{B} = (b_1, b_2, ..., b_n)$ is an ordered basis of Vand $A = M(T) = {}_{\mathscr{B}}[T]_{\mathscr{B}}$. Then

 $m_T = m_A$

We will need

Lemma

Let $f(x) \in F[x]$, A, T, \mathscr{B} be as above. Then

 $M\left(f(T)\right) = f(A).$

▲ロ → ▲ 団 → ▲ 臣 → ▲ 臣 → の < ⊙

Proof of Lemma. $f(x) = a_m x^m + a_{m-1} x^{m-1} + \ldots + a_1 x + a_0 I$. So

$$f(T) = a_k T^k + a_{k-1} T^{k-1} + \ldots + a_1 T + a_0 I$$

But M is a ring homomorphism, so

$$M(f(T)) = M(a_k T^k + a_{k-1} T^{k-1} + \ldots + a_1 T + a_0 I)$$

= $M(a_k T^k) + M(a_{k-1} T^{k-1}) + \ldots + M(a_1 T) + M(a_0 I)$
= $a_k M(T^k) + a_{k-1} M(T^{k-1}) + \ldots + a_1 M(T) + a_0 M(I)$
= $a_k A^k + a_{k-1} A^{k-1} + \ldots + a_1 A + a_0 I = f(A)$. \Box

Corollary

$$f(T) = 0 \Longleftrightarrow f(A) = 0.$$

 m_T is the monic nonzero polynomial of lowest degree in the space

$$\mathcal{N}_T = \{ f \in F \left[x \right] : f(T) = 0 \}$$

 m_A is the monic polynomial of lowest degree in the space

$$\mathcal{N}_A = \{ f \in F[x] : f(A) = 0 \}$$

But we just saw that $N_T = N_A$ so the smallest degree monic polynomial in each of the subspaces is the same.