1. 2.4 e)

These three vectors are linearly dependent. We give an explicit dependence relation

$$
(-1)<1,1,2>+(1)<3,1,2>+(2)<-1,0,0>=\mathbf{0}
$$

2. 2.5

Let $\mathbf{u}=<1,1,0>$ and $\mathbf{v}=<0,1,1>$. We claim $S=S(\mathbf{u}, \mathbf{v})$ is the solution set, call it X, of

$$
\begin{equation*}
x_{1}-x_{2}+x_{3}=0 . \tag{1}
\end{equation*}
$$

It is clear that $S \subset X$. Now suppose $X \not \subset S$. Then there is some vector $\mathbf{w} \in X$ with $w \notin S$. Since X is a subspace we have $S(\mathbf{u}, \mathbf{v}, \mathbf{w}) \subset X$. But, since w $\notin S$ we have $S(\mathbf{u}, \mathbf{v}, \mathbf{w})=\mathbb{R}^{3}$. However, not all vectors in \mathbb{R}^{3} satisfy Equation (1).
3. 2.10

Suppose $A=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ is a set which contains a linearly dependent set of vectors. We may assume (possibly reindexing the vectors) that $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}\right\}$ is a set of linearly dependent vectors, where $m \leq n$. Then there are scalars c_{1}, \ldots, c_{m}, not all zero, so that

$$
c_{1} \mathbf{v}_{1}+\cdots+c_{m} \mathbf{v}_{m}=\mathbf{0}
$$

Now we demonstrate a dependence with all the vectors in A. Let

$$
d_{i}= \begin{cases}c_{i} & 1 \leq i \leq m \\ 0 & m+1 \leq i \leq n\end{cases}
$$

Then not all the d_{i} are zero and

$$
\sum_{i=1}^{n} d_{i} \mathbf{v}_{i}=\sum_{i=1}^{m} c_{i} \mathbf{v}_{i}=0
$$

The analogous statement is "Any subset of a linearly independent set is linearly independent."

