1. $3.11,3$)

$$
T U(a, b)=T(U(a, b))=T(a+b, a)=(-2 a-3 b, b)
$$

whereas

$$
U T(a, b)=U(T(a, b))=U(-3 a+b, a-b)=(-2 a,-3 a+b) .
$$

So $U T \neq T U$.
2. $3.11,9)$ We will prove $(a) \Longleftrightarrow(b)$ and then $(a)+(b) \Longleftrightarrow(c)$ and $(a)+(b) \Longleftrightarrow$ (d). The main point is proving $(a) \Longleftrightarrow(b)$ since the other two are almost by definition.

Suppose T is one-to-one and V has dimension n. Since T is one-to-one, $N(T)=\{0\}$ and thus $\operatorname{dim} N(t)=0$. Thus, by the rank-nullity theorem, $\operatorname{dim}(T(V))=n$ and since V is n-dimensional we have that $T(V)=V$, hence T is onto.
Suppose now that T is onto. Then $T(V)=V$ and hence $\operatorname{dim}(T(V))=n$. Now by the rank-nullity theorem, $\operatorname{dim} N(t)=0$ and hence T is one-to-one.
We have seen that being one-to-one and onto is equivalent to being an isomorphism, hence $(a)+(b) \Longleftrightarrow(c)$.
We have also proven that being one-to-one and onto is equivalent to being invertible, hence $(a)+(b) \Longleftrightarrow(d)$.
3. $3.13,4)$ We want to show that $\operatorname{dim}(T(V))=\operatorname{rank}(A)$. Fix a basis $\mathcal{B}=\left(b_{1}, \ldots, b_{n}\right)$. Then we know $T(V)=S\left(T\left(b_{1}\right), \ldots, T\left(b_{n}\right)\right)$, hence

$$
\operatorname{dim} T(V)=\operatorname{dim} S\left(T\left(b_{1}\right), \ldots, T\left(b_{n}\right)\right)
$$

On the other hand, by definition, since $\operatorname{rank}(\mathrm{A})$ is the dimension of the column space and the columns of A are $\left[T\left(b_{1}\right)\right]_{\mathcal{B}}, \ldots,\left[T\left(b_{n}\right)\right]_{\mathcal{B}}$, we have

$$
\operatorname{rank}(A)=\operatorname{dimS}\left(\left[T\left(b_{1}\right)\right]_{\mathcal{B}}, \ldots,\left[T\left(b_{n}\right)\right]_{\mathcal{B}}\right) .
$$

But, the map "sub- \mathcal{B} " (choosing coordinates) is an isomorphism, hence these dimensions are the same.

