LECTURE 7

The Five Basic Discrete Random Variables

1. Binomial
2. Hypergeometric
3. Geometric
4. Negative Binomial
5. Poisson

Remark. On the handout "The basic probability distributions" there are six distributions. I did not list the Bernoulli distribution above because it is too simple.

In this lecture we will do 1. and 2. above.

1. The Binomial Distribution. Suppose we have a Bernoulli experiment with $P(S)=p$, for example, a weighted coin with $P(H)=p$. As usual we put $q=1-p$.
Repeat the experiment (flip the coin). Let $X=\#$ of success (\# of heads). We want to compute the probability distribution of X. Note, we did the special case $n=3$ in Lecture 6, pgs. $4 \& 5$. Clearly, the set of possible values for X is $0,1,2,3, \cdots, n$. Also,

$$
P(X=0)=P(T T T)=q q \cdots q=q^{n}
$$

Explanation. Here we assume the outcomes of each of the repeated experiments are independent so

$$
\begin{aligned}
P\left(\left(T \text { on } 1^{s t}\right)\right. & \left.\cap\left(T \text { on } 2^{n d}\right) \cap \cdots \cap(T \text { on } n-t h)\right) \\
& =P\left(T \text { on } 1^{s t}\right) P\left(T \text { on } 2^{n d}\right) \cdots P(T \text { on } n-t h) \\
& =q q \cdots q=q^{n}
\end{aligned}
$$

Note: T on $2^{\text {nd }}$ means T on $2^{\text {nd }}$ with no other information so

$$
P\left(T \text { on } 2^{n d}\right)=q
$$

Also,

$$
P(X=n)=P(H H \cdots H)=p^{n}
$$

Now we have to work what is $P(X=1)$?

Another standard mistake. The events $(X=1)$ and $\underbrace{H T T \cdots T}$ are NOT equal.
Why - the head doesn't have to come on the first toss. So in fact

$$
(X=1)=H T T \cdots T \cup T H T \cdots T \cup \cdots \cup T T T \cdots T H
$$

All of the n events on the right have the same probability namely $p q^{n-1}$ and they are mutally exclusive. There are n of them so

$$
P(X=1)=n p q^{n-1}
$$

Similarly,

$$
P(X=n-1)=n p^{n-1} q
$$

(exchange H and T above).
The general formula. Now we want $P(X=k)$. First we note

$$
P(\underbrace{H \cdots H}_{k} \underbrace{T T \cdots T}_{n-k})=p^{k} q^{n-k}
$$

But again the heads don't have to comefirst. So we need to
(1) Count all the words of length n in H and T that involve $k H^{\prime} s$ and $n-k T^{\prime} s$.
(2) Multiply the number in (1) by $p^{k} q^{n-k}$.

So how do we solve (1). Think of filling n-slot's with $k H^{\prime} s$ and $n-k T^{\prime} s$

Main Point. Once you decide where the $k H^{\prime} s$ go you have no choice with the $T^{\prime} s$. They have to go in the remaining $n-k$ slots.

So choose the k-slots when the heads go. So we have to make a choice of k things from n things so $\binom{n}{k}$. So

$$
P(X=k)=\binom{n}{k} p^{k} q^{n-k}
$$

So we have motivated the following definition.
Definition. A discrete random variable X is said to have binomial distribution with parameters n and p (abbreviated $X \sim \operatorname{Bin}(n, p)$) if X takes value $0,1,2, \cdots, n$ and

$$
\begin{equation*}
P(X=k)=\binom{n}{k} p^{k} q^{n-k}, \quad 0 \leq k \leq n \tag{*}
\end{equation*}
$$

Remark. The text uses x instead of k for the independent (i.e., input) variable. So this would be written

$$
P(X=x)=\binom{n}{x} p^{x} q^{n-x}
$$

I like to save x for the case of continuous random variables.

Finally, we may write

$$
\begin{equation*}
p(k)=\binom{n}{k} p^{k} q^{n-k}, \quad 0 \leq k \leq n . \tag{}
\end{equation*}
$$

The text uses $b(\cdot ; n, p)$ for $p(\cdot)$ so we would write for $\left({ }^{* *}\right)$

$$
b(k ; n, p)=\binom{n}{k} p^{k} q^{n-k} .
$$

The Expected Value and Variance of a Binomial Random Variable

Proposition. Suppose $X \sim \operatorname{Bin}(n, p)$. Then $E(X)=n p$ and $V(X)=n p q$ so $\sigma=$ standard deviation $=\sqrt{n p q}$.

Remark. The formula for $E(X)$ is what you might expect. If you toss a fair coin 100 times the $E(X)=$ expected number of heads $n p=(100)\left(\frac{1}{2}\right)=50$. However, if you toss it 51 times then $E(X)=\frac{51}{2}$ - not what you "expect".

Using the binomial tables. Table A1 in the text pg. 664-666 tabulates the cdf $B(x ; n, p)$ for $n=5,10,15,20,25$ and selected values of p. Use web instead. Google "binomial distribution".

Example 3.32. Suppose that 20% of all copies of a particular textbook fail a certain binding strength text. Let X denote the number among 15 randomly selected copies that fail the test. Find

$$
P(4 \leq X \leq 7)
$$

Solution. $X \sim \operatorname{Bin}(15, .2)$. We want to compute $P(4 \leq X \leq 7)$ using the table on page 664 . So how do we write $P(4 \leq X \leq 7)$ in terms of the form $P(X \leq a)$.

Answer (\#)

$$
P(4 \leq X \leq 7)=P(4 \leq 7)-P(4 \leq 3)
$$

So

$$
\begin{aligned}
P(4 \leq X \leq 7) & =B(7 ; 15, .2)-B(3 ; 15, .2) \\
& =.996-.648 \\
& =.348
\end{aligned}
$$

N.B. Understand (\#). This is the key to using computers and statistical calculators to compute.

2. The Hypergeometric Distribution.

Example

Millson to draw diagram

$$
N=\text { chips }, \quad M=\text { red chips }, \quad L=\text { white chips }
$$

Consider an urn containing N chips of which M are red and $L=N-M$ are white. Suppose we remove n chips without replacement so $n \leq N$.
Define a random variable X by $X=\#$ of red chips we get. Find the probability distriution of X.

Proposition.

$$
P(X=k)=\frac{\binom{M}{k}\binom{L}{n-k}}{\binom{N}{n}}
$$

if

$$
\begin{equation*}
\underbrace{\max (0, n-L) \leq k \leq \min (n, m)} \tag{b}
\end{equation*}
$$

This means $k \leq$ both n and M and both 0 and $n-L \leq k$. These are the possible val;ues of k, that is, if k doesn't satisfy b then

$$
P(X=k)=0
$$

Proof of the Formula (*)

Suppose we first consider the special case where all the chips are red so

$$
P(X=n)
$$

This is the same problem as the one of finding all hearts in bridge

$$
\text { red chip } \longleftrightarrow \text { heart }
$$

white chip \longleftrightarrow non-heart

So we use the principle of restricted choice

$$
P(X=n)=\frac{\binom{M}{n}}{\binom{N}{n}} .
$$

This agrees with $(*)$. But $(*)$ is harder because we have to consider the case where there are $k<n$ red chip. So we have to choose $n-k$ white chips as well.
So choose k red chips - $\binom{M}{k}$ ways, then for each such choice, choose $n-k$ white chips $\binom{L}{n-k}$ ways. So

$$
\#\binom{\text { choices of exactly } k \text { red chips }}{\text { in the } n \text { chips }}=\binom{M}{k}\binom{L}{n-k} .
$$

Clearly there are $\binom{N}{n}$ ways of choosing n chips from N chips so ($*$) follows.
Definition. If X is a discrete random variable with pmf defined by page 14 then X is said to have hypergeometric distribution with parameters n, M, N. In the text the pmf is denoted

$$
h(x ; n, M, N) .
$$

What about the conditions

$$
\begin{equation*}
\max (0, n-L) \leq k \leq \min (n, m) . \tag{b}
\end{equation*}
$$

This really means

$$
\begin{equation*}
k \leq \text { both } n \text { and } M \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\text { both } 0 \text { and } n-L \leq k . \tag{2}
\end{equation*}
$$

b_{1} says

$$
\begin{aligned}
k \leq n \longleftrightarrow & \text { we can't choose more than } n \text { red chip } \\
& \text { because we are only choosing } n \text { chips in total }
\end{aligned}
$$ $k \leq M \longleftrightarrow$ because there are only M red chips to choose from and b_{2}

$$
k \geq 0 \text { is obvious. }
$$

So the above three inequalities are necessary. At first glance they look sufficient because if k satisfies the above three inequalities you can certainly go ahead and choose k red chips. But what about the white chips? We aren't done yet, you have to choose $n-k$ white chips and there are only L white chips available so if $n-k>L$ we are sunk so we must have

$$
n-k \leq L \Longleftrightarrow k \geq n-L
$$

This is the second inequality of $\left(b_{2}\right)$. If it is satisfied, we can go ahead and choose the $n-k$ white chips to the inequalities in (b) are necessary and sufficient.

Proposition. Suppose X has hypergeometric distribution with parameters n, M, N. Then
(i) $E(X)=n \frac{M}{N}$
(ii) $V(X)=\left(\frac{N-n}{N-1}\right) n \frac{M}{N}\left(1-\frac{M}{N}\right)$.

If you put

$$
p=\frac{M}{N}=\text { the probability of getting a red disk on the first draw }
$$

then we may rewrite the above formulas as

$$
\left.\begin{array}{l}
E(X)=n p \\
V(X)=\left(\frac{N-n}{N-1}\right) n p q
\end{array}\right\} \text { reminiscent of the binomial distribution. }
$$

Another Way to Derive (*)

There is another way to derive $\left(^{*}\right)$ - the way we derived the binomial distribution. It is way harder.

Example . Take $n=2$

$$
\begin{aligned}
P(X=0) & =\frac{L}{N} \frac{L-1}{N-1} \\
P(X=2) & =\frac{M}{N} \frac{M-1}{N-1} \\
P(X=1) & =P(R W)+P(W R) \\
& =\frac{M}{N} \frac{L}{N-1}+\frac{M}{N} \frac{L}{N-1} \\
& =2 \frac{M}{N} \frac{L}{N-1}
\end{aligned}
$$

In general, we clalim that all the words with $k R^{\prime} s$ and $n-k W^{\prime} 2$ have the same probability. Indeed each of these probabilities are fractions with the same denominator

$$
N(N-1) \cdots(N-n-1)
$$

and they have the same factors in the numerator scrambled up $M(M-1)(M-k+1)$ and $L(L-1) \cdots,(L-n-k+1)$. But the order of the factors doesn't matter so

$$
\begin{aligned}
P(X=k) & =\binom{n}{k} P(R \cdots R W \cdots W) \\
& =\binom{n}{k} \frac{M(M-1) \cdots(M-k+1) L(L-1) \cdots(L-n-k+1)}{N(N-1) \cdots N(-n+1)}
\end{aligned}
$$

Why is $(*)$ equal to this?

$$
\begin{aligned}
(*) & =\frac{\binom{m}{k}\binom{L}{n-k}}{\binom{N}{n}} \\
& =\frac{\left(\frac{M(M-1) \cdots(M-k+1) L(L-1) \cdots(L-n-k+1)}{k!(n-k)!}\right)}{\left(\frac{N(N-1) \cdots(N-n+1)}{n!}\right)}
\end{aligned}
$$

Exercise in fractions

$$
\begin{aligned}
& =\frac{n!}{k!(n-k)!} \frac{M(M-1) \cdots(M-k+1) L(L-1) \cdots(L-n-k+1)}{N(N-1) \cdots(N-n+1)} \\
& =\binom{n}{k} \frac{M(M-1) \cdots(M-k+1) L(L-1) \cdots(L-n-k+1)}{N(N-1) \cdots(N-n+1)} .
\end{aligned}
$$

Obviously, the first way $\left({ }^{*}\right)$ is easier so if you are doing a real-world problem and you start getting things that look like $\left({ }^{* *}\right)$ step back and see if you can use the first method instead. You will tend to try the second method first. I will test you on this later.

An Important General Problem

Suppose you draw n chips with replacement and let X be the number of red chips you get. What distribution does X have?

This explain (a little) the formulas on page 21. Note that if N is far bigger than n then it is almost like drawing with replacement. "The urn doesn't notice that any chips have been removed because so few (relatively) have been removed."

In this case

$$
\frac{N-n}{N-1}=\frac{N\left(1-\frac{n}{N}\right)}{N\left(1-\frac{1}{N}\right)} \approx \frac{N}{N}=1
$$

(because N is huge $\frac{1}{N}$ and $\frac{N}{N} \approx 0$). So $V(X) \approx n p q$. This is what is going on in page 118 of the text. The number $\frac{N-n}{N-1}$ is called the "finite population correction factor."

