1. Let X be a continuous random variable with the probability density function

$$
f(x)=\left\{\begin{array}{l}
5 x^{4}, 0 \leq x \leq 1 \\
0, \text { otherwise }
\end{array}\right.
$$

(a) Find $E(X)$.
(b) Find $E\left(X^{2}\right)$.
(c) Find $V(X)$.
(d) Find $F(x)$, the cumulative distribution function of X.
(e) Find the median of X.
(20 points)
2. This was Problem 3 (the component problem on your Midterm 1 - that is fall 2006 Midterm 1).
3. Suppose X and Y are random variables defined on the same sample space with the following joint probability mass function.

$\mathrm{X} \backslash \mathrm{Y}$	0	1	2	3
0	$1 / 32$	$3 / 32$	$3 / 32$	$1 / 32$
1	$2 / 32$	$6 / 32$	$6 / 32$	$2 / 32$
2	$1 / 32$	$3 / 32$	$3 / 32$	$1 / 32$

(a) Compute the probability mass functions of the random variables X and Y. Each has binomial distribution, what are the binomial parameters n and p for X and Y ?
(b) Are X and Y independent?
(c) Compute the probability mass function of the random variable $W=$ $X+Y$.
(d) Compute the probability mass function of the random variable $W=X Y$.
(e) What is $\operatorname{Cov}(X, Y)$ (use your answer from (b) to avoid making a long computation).
(20 points)
4. Let $X_{1}, X_{2}, \cdots, X_{n}$ be a random sample from an exponential distribution with parameter $\lambda=\frac{1}{2}$. Let $W=X_{1}+X_{2}+\cdots+X_{n}$.
(a) Find the moment generating function $M_{W}(t)$ of W.
(Hint: all the moment generating functions $M_{X_{i}}(t)$'s are equal to the moment generating function of an exponential random variable with parameter $\frac{1}{2}$. Now multiply all the $M_{X_{i}}(t)$'s together to get $M_{W}(t)$.)
(b) This moment generating function (i.e. the moment generating function of W) is the moment generating function of one of the standard distributions on the handout on distributions-which one?
(20 points)
5. Let $x_{1}, x_{2}, \cdots, x_{n}$ be a sample from a Bernoulli distribution with parameter p (so each x_{i} is either 1 or 0). Let \hat{p} be the sample proportion (i.e. the number of 1's divided by n or equivalently the number of observed successes divided by the number of observations) and $\hat{q}=1-\hat{p}$. In formula (7.11) of the text it is stated that the interval

$$
\left(\hat{p}-z_{\frac{\alpha}{2}} \sqrt{\frac{\hat{p} \hat{q}}{n}}, \hat{p}+z_{\frac{\alpha}{2}} \sqrt{\frac{\hat{p} \hat{q}}{n}}\right)
$$

is the observed value of an approximate $100(1-\alpha) \%$ confidence interval for the population proportion (success probability) p.
A study of 100 football helmets of a certain type found that 10 showed damage when subjected to an impact test. Let p denote that true proportion of football helmets of this type that would be damaged by the impact test.

Use the above formula to construct a 90% confidence interval for p. (Hint: think of the 100 helmets as a sample of size 100 from the population of all footballs helmets of the given type.)
(10 points)
6. Let $X_{1}, X_{2}, \cdots, X_{n}$ be a random sample from a normal distribution with mean μ and variance σ^{2}. We wish to predict the next observation X_{n+1}. Assume that we know σ^{2}. Let $\bar{X}=\frac{X_{1}+\cdots+X_{n}}{n}$ be the sample mean for the first n observations. Use the theorem that $Z=\frac{\bar{X}-X_{n+1}}{\sqrt{\frac{n+1}{n}} \sigma}$ has standard normal distribution and prove that the random interval

$$
\left(-\infty, \bar{X}+z_{\alpha} \sqrt{\frac{n+1}{n}} \sigma\right)
$$

is a $100(1-\alpha) \%$ prediction interval for the next observation X_{n+1}. (20 points)

