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1. Introduction

Today we will do §2.1 and 2.2. We will skip Chapter 1.
We all have an intuitive notion of probability.
Let’s see.
What is the probability P of tossing two heads in a row with a fair
coin?
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Method 1
List all possible outcomes{

HH , HT , TH, TT
}

so P =?.

Question
What did we just assume to arrive at that answer?
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Another way

1
st
 toss 2nd toss

However it is important to put probability into a formal mathematic
framework for many reasons.
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1. Even “elementary”
Problems become too hard unless we can break them down into
simpler problems using the rules of Set Theory.

Examples
Let’s see how you can deal with these now and later.
(there is another reason which we will run into later - we often have
infinite sets and need calculus e.g. financial math)
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Problems

1 What is the probability of getting one head in one hundred
tosses of a fair coin?

2 What is the probability of getting 27 heads in one hundred
tosses of a fair coin?
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2. Transition from the naive theory to the formal
mathematical theory
To make the transition we introduce the word “experiment” which
will be taken to mean “any action or process whose outcome is
subject to uncertainty”
Devore, Ninth Edition- pg. 53.

Examples
Tossing a fair coin 100 times.
Dealing 5 cards from a 52 card deck - a poker hand.
Dealing 13 cards from a 52 card deck - a bridge hand.
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Definition

The set of all possible outcomes of on experiment will be called the
sample space of that experiment and denoted S.

Experiment
3 tosses of a fair coin.

S =

 HHH, HHT , HTH, HTT ,

THH, THT , TTH, TTT


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Definition

A subset A of S is called an event.

Problem

Find P (at least one head in 3 tosses of a fair coin)

We are looking for P(A) where A is a subset of the previous S.
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S = {HHH, HHT , HTH, HTT , THH, THT , TTH, TTT }

We will call this “our favorite sample space” from now on.
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3. The Formal Mathematical Theory
Let S be a set (the sample space). A probability measure P on S is
a rule (function) which assigns a real number P(A) to any subset A
of S (i.e., to any event) such that the following axioms are satisfied

1 For any event A ⊂ S we have P(A) ≥ 0

2 P(S) = 1

Lecture 1 : The Mathematical Theory of Probability



11/ 30

3 If A1, A2, , An,. . .
is a possibly infinite collection of pairwise disjoint (mutually
exclusive) events then

P (A ,∪A2 ∪ . . . ∪ An ∪ . . .) =
∞∑

n=1

P(An)︸      ︷︷      ︸
sum of an infinite series
not just ordinary sum.

mutually exclusive means Ai ∩ Aj = ∅ for any pair i, j with i , j.
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Special cases

1 Two mutually-exclusive events A1 and A2 (so A1 ∩ A2 = ∅)

P(A1 ∪ A2) = P(A1) + P(A2)

2 n mutually-exclusive events A1,A2, . . . ,An

P(A1 ∪ A2 ∪ . . . ∪ An) = P(A1) + P(A2) + · · ·+ P(An)
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A Class of Examples
Let S be a set with n elements. Let A ⊂ S be any subset. Define

P(A) =
](A)

](S)
=
](A)

n

Then P satisfies the axioms 1., 2. and 3.
Here ](A) means the number elements in A . This is called the
“equally likely probability measure”.
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An example in the above class
Take our favorite sample space

S =

 HHH, HHT , HTH, HTT

THH, THT , TTH, TTT


Let A be the subset (event) of outcomes with at least one head
and one tail.
All the outcomes are equally likely (because the coin is fair) so

P(A) =
](A)

](s)
=

6
8
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A continuous Example 15
Consider the unit square s in the plane

Let A ⊂ S be any subset.
Define

P(A) = Area of A

Then P satisfies the axioms 1., 2. and 3.
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Let A be the subset of points in the square below the diagonal.
What is P(A)?

Can you find A so that P(A) =
1
π

?
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4. A Quick Trip Through Set-Theory (pg. 49-50)
Let s be a set and A and B be subsets. Then we have A ∪ B
(union), A ∩ B (intersection) and A ′ (complement).

Venn diagrams
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union

intersection

A ∪ B = “everything in S that is in either A or B”
A ∩ B = “everything in S that is in A and B”
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The formulas linking ∪, ∩ and ′

To help you remember the formulas that follow use the analogy
s ←→ set of numbers
∪ ←→ +
∩ ←→ ·

The commutative laws
A ∪ B = B ∪ A (analogue a + b = b + a)
A ∩ B = B ∩ A (analogue a · b = b · a)
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The associative laws
(A ∪ B) ∪ C = A ∪ (B ∪ C) (analogue (a + b) + c = a + (b + c))
(A ∩ B) ∩ C = A ∩ (B ∩ C) (analogue (a · b) · c = a − (b · c))
Now we have laws that relate two or more of ∪, ∩ and ′.

The distributive laws
A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C) (analogue
a − (b + c) = (a · b) + (a · c))
A ∩ (B ∩ C) = (A ∪ B) ∩ (A ∪ C) no analogue

Problem

What would the analogue of the second distributive law say. It isn’t
true.
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De Morgan’s Laws
(no analogy with +, ·)
(A ∪ B)′ = A ′ ∩ B′

(A ∩ B)′ = A ′ ∪ B′

C ⊂ D ⇔ C ′ ⊃ D′

↑

if and only if
(so complement reverses ∪, ∩ and ⊂)
One way to think of the first formula
not in A or B = not in A and not in B
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The best way to see it is by a Venn diagram

shaded

shaded

shaded

Top square = intersection of bottom two squares

Lecture 1 : The Mathematical Theory of Probability



23/ 30

Consequences of the axioms of probability theory
pg. 54-56.
We will prove two propositions which will be extremely useful to
you.

Proposition 1 (Complement law)

P(A ′) = 1 − P(A).

Proof.

A ∪ A ′ = S so
P(A ∪ A ′) = P(S) = 1 (axiom 2) (])
But A ∩ A ′ = ∅ so by
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Proof (Cont.)

axiom 3, special case 1

P(A ∪ A ′) = P(A) + P(A ′) (]])

Putting (]) and (]]) together we get

1 = P(A) + P(A ′)

�

Corollary 1

P(φ) = 0.

Proof.

φ = S′

so P(φ) = 1 − P(S) = 1 − 1 = 0. �
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Remark

∅ is not the Greek letter phi, it is a Norwegian letter. The symbol
was chosen by André Weil. For example the English word beer
translates into Norwegian as ∅`.

Corollary 2

P(A) ≤ 1.

Proof.

P(A) = 1 − P(A ′) ≤ 1
because P(A ′) ≥ 0. �

Hence all probabilities are between zero and one:

0 ≤ P(A) ≤ 1

Lecture 1 : The Mathematical Theory of Probability



26/ 30

To illustrate the use of Proposition 1, let us go back to computing P
(at least one head in three tosses)
Put S = our favorite sample space.
A = at least one head so
A ′ = no heads = all tails = TTT
so

P(A) = 1 − P(TTT) = 1 −
1
8
=

7
8

Now we can do 100 tosses
P (at least one head) = 1 −

1
2100
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Recall that two events A and B are mutually exclusive if A ∩ B = ∅
and axiom 3 says in this case

P(A ∪ B) = P(A) + P(B) (])

The following proposition is absolutely critical for computations

Proposition 2 (Additive Law)

P(A ∪ B) = P(A) + P(B) − P(A ∩ B)

Note that this is consistent with (]) above because if A ∩ B = ∅
then

P(A ∩ B) = P(∅) = 0
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Proof.

The proof is hard.
It depends on the following Venn diagram.

We see that A ∪ B is the union of three mutually exclusive sets.

A ∪ B = (A ∩ B′) ∪ (A ∩ B) ∪ (B ∩ A ′)

so by axiom 3 with n = 3

P(A ∪ B) = P(A ∩ B′) + P(A ∩ B) + P(B ∩ A ′) (]])
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Proof (Cont.)

How do we compute the first and third terms?
We have a disjoint union (i.e., union of mutually exclusive sets)

A = (A ∩ B) ∪ (A ∩ B′)

so by axiom 3

P(A) = P(A ∩ B) + P(A ∩ B′)

whence
P(A ∩ B′) = P(A) − P(A ∩ B) (1)

Similarly
P(B ∩ A ′) = P(B) − P(A ∩ B) (3)

Plug (1) and (3) into (]]). �
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What about the intersection of three terms?

Proposition 3

P(A ∪ B ∪ C) = P(A) + P(B) + P(C)

−P(A ∩ B) − P(A ∩ C) − P(B ∩ C)

+P(A ∩ B ∩ C)

This is (more or less) “the principle of exclusion and inclusion”

1 include the singletons A, B, C

2 exclude the pairs A ∩ B, A ∩ C, B ∩ C

3 include the triple A ∩ B ∩ C
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