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The gamma distribution is a continuous distribution depending on two
parameters, α and β. It gives rise to three special cases

1 The exponential distribution (α = 1, β =
1
λ

)

2 The r-Erlang distribution (α = r , β =
1
λ

)

3 The chi-squared distribution (α =
ν

2
, β = 2)
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The Gamma Distribution

Definition

A continuous random variable X is said to have gamma distribution with
parameters α and β, both positive, if

f(x) =


1

βαΓ(α)
xα−1e − x/β, x > 0

0, otherwise

What is Γ(α)?
Γ(α) is the gamma function, one of the most important and common functions in
advanced mathematics. If α is a positive integer n then

Γ(n) = (n − 1)!

(see page 17)
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Definition (Cont.)

So Γ(α) is an interpolation of the factorial function to all real numbers.
Z lim
α→0

Γ(α) = ∞

Graph of Γ(α)
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I will say more about the gamma function later. It isn’t that important for Stat 400,
here it is just a constant chosen so that

∞∫
−∞

f(x)dx = 1

The key point of the gamma distribution is that it is of the form

(constant) (power of x) e−cx , c > 0.

The r-Erlang distribution from Lecture 13 is almost the most general gamma
distribution.
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The only special feature here is that α is a whole number r.

Also β =
1
λ

where λ is the Poisson constant.

Comparison Gamma distribution(
1
β

)α 1
Γ(α)

xα−1e − x/β

r-Erlang distribution α = r , β =
1
λ

λr 1
(r − 1)!

x r−1e−λx

Lecture 14 : The Gamma Distribution and its Relatives



6/ 18

Proposition

Suppose X has gamma distribution with parameters α and β then

(i) E(X) = αβ

(ii) V(X) = αβ2

so for the r-Erlang distribution

(i) E(X) =
r
λ

(ii) V(X) =
r
λ2
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Proposition (Cont.)

As in the case of the normal distribution we can compute general gamma
probabilities by standardizing.

Definition

A gamma distribution is said to be standard if β = 1. Hence the pdf of the
standard gamma distribution is

f(x) =


1

Γ(α)
xα−1e−x , x ≥ 0

0, x < 0

The cdf of the standard
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Definition (Cont.)

gamma function is called the incomplete gamma function (divided by Γ(α))

F(x) =
1

Γ(α)

x∫
0

xα−1e−xdx

(see page 13 for the actual gamma function)
It is tabulated in the text Table A.4 for some (integral values of α)

Proposition

Suppose X has gamma distribution with parameters α and β. Then Y =
X
β

has

standard gamma distribution.
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Proof.

We can prove this, Y =
x
β

so X = βy.

Now fX (x)dx =
1
βα

1
Γ(α)

xα−1e − x/βdx.

Now substitute x = βy to get

�
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Example 4.24 (cut down)
Suppose X has gamma distribution with parameters α = 8 and β = 15.
Compute

P(60 ≤ X ≤ 120)

Solution

Standardize, divide EVERYTHING by β = 15.

P(60 ≤ X ≤ 120) = P
(
60
15
≤

X
15
≤

120
15

)
= P(4 ≤ Y ≤ 8) = F(8) − F(4)

from table A.4

= .547 − .051 = .496
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The Chi-Squared Distribution

Definition

Let ν (Greek letter nu) be a positive real number. A continuous random variable
X is said to have chi-squared distribution with ν degrees of freedom if X has
gamma distribution with α = ν/2 and β = 2. Hence

f(x) =


1

2ν/2
Γ(ν/2)x ν/2−1

e−x/2, x > 0

0, otherwise.

capital chi
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The reason the chi-squared distribution is that if

Z ∼ N(0, 1) then X = Z2 ∼ χ2(1)

and if Z1,Z2, . . . ,Zm are independent random variables the

Z2
1 + Z2

2 + · · ·Z2
m ∼ χ

2(m)

(later).

Proposition (Special case of pg. 6)

If X ∼ χ2(ν) then

(i) E(X) = ν

(ii) V(X) = 2ν
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Appendix : The Gamma Function

Definition

For α > 0, the gamma function Γ(α) is defined by

Γ(α) =

∞∫
0

xα−1e−xdx

Remark 1

It is more natural to write
this is the variable

but I won’t explain why unless you ask.
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Remark 2

In the complete gamma function we integrate from 0 to infinity whereas for the
incomplete gamma function we integrate from 0 to x.

F(x;α)

x∫
0

yα−1e−ydx.

Thus
lim

x→∞
F(x;α) = Γ(α).

Lecture 14 : The Gamma Distribution and its Relatives



15/ 18

Remark 3

Many of the “special functions” of advanced mathematics and physics e.g.
Bessel functions, hypergeometric functions... arise by taking an elementary
function of x depending on a parameter (or parameters) and integrating with
respect to x leaving a function of the parameter. Here the elementary function is
xα−1e−x . We “integrate out the x” leaving a function of α.
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Lemma

Γ(1) = 1

Proof.

Γ(1) =
∞∫
0

e−xdx = (−e−x)

∣∣∣∣∣∣∣
∞

0

= 1 �

The Functional Equation for the Gamma Function

Theorem

Γ(α + 1) = αΓ(α), α > 0

Proof.

Integrate by parts

�
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Corollary

If n is a whole number
Γ(n) = (n − 1)!

Proof.

I will show you Γ(4) = 3Q

Γ(4) = Γ(3 + 1) = 3Γ(3)

= 3Γ(2 + 1) = (3)(2)Γ(2)

= (3)(2)Γ(1 + 1) = (3)(2)(1)F(1)

= (3)(2)(1)

In general you use induction. �

We will need Γ(half integers) e.g. Γ

(
5
2

)
.

Theorem

Γ

(
1
2

)
=
√
π
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I won’t prove this. Try it.

Γ

(
3
2

)
= Γ

(
1
2

+ 1
)

=
1
2

Γ

(
1
2

)
=

√
π

2

Γ

(
5
2

)
= Γ

(
3
2

+ 1
)

=
3
2

Γ

(
3
2

)
=

(
3
2

) (
1
2

)
√
π

In general

Γ

(
2n + 1

2

)
=

(1)(3)(5) . . . (2n − 1)

2n

√
π

For statistics we will need only Γ (integer) = (integer-1)!

and Γ

(
add integer

2

)
= above
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