
Lecture 20 Random Samples

0/ 13



1/ 13

One of the most important concepts in statistics is that of a “random sample”.
The definition of a random sample is rather abstract. However it is critical to
understand the idea behind the definition, so we will spend an entire lecture
motivating the definition we will do this by giving three motivating examples:
polling for elections, testing the lifetime of a Gateway computer, and picking a
sequence of random numbers.
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First Motivating Example
We recall that a random variable X is a Bernoulli random variable if X takes
exactly two values 0 and 1 such that

P(X = 1) = p

P(X = 0) = q q = 1 − p

In this case we write X ∼ Bin(1, p) (the Bernoulli distribution is the special case
of the binomial distribution where n = 1).

We define a Bernoulli random variable Xelection as follows.

Choose a random voter in the U.S. Ask him (her) if he (she) intends to vote for
Trump in the next election. Record 1 if yes and 0 if no. So Xelection takes
values 0 and 1 with definite (but unknown to us) probabilities q and p.
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The $ 64,000 question
What is p?

How do you answer this question? Take a poll - in the language of statistics we
say one is “taking a sample from a Bin(1, p) distribution where p is unknown.”
If we poll n people we arrive at a sequence of 0’s and 1’s

x1, x2, . . . , xn

We can represent this schematically by

The Xi ’s here should be lower case.
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We think of x1, x2, . . . , xn as the results after the poll is taken. We now introduce
random variables X1,X2, . . . ,Xn representing the potential outcomes before
the poll is taken - we assume we have decided how many people we will talk to
and how we are going to choose them.

Thus taking a poll assigns definite values x1, x2, . . . , xn to the random variables
X1,X2, . . . ,Xn. We may schematically represent the situation before the poll is
taken by

The dotted arrow means we have not yet performed the poll.
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It is critical to observe that X1,X2, . . . ,Xn are random variables (x1, x2, . . . , xn are
ordinary i.e. numerical variables). The Xi ’s take values 0 and 1 with probabilities
q and p respectively. So the X ′1s have the same probability distribution as the
“underlying” (i.e. the distribution we are sampling from) random variable Xelection.
The random variables X1, . . . ,Xn will be independent if the poll is constructed
properly. Hence, the random variables X1,X2, . . . ,Xn are independent and
“identically distributed.” We say X1,X2, . . . ,Xn is a random sample from a
Bin(1, p) distribution.
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We conclude this example with a formal mathematical construction of
X1,X2, . . . ,Xn. The sample space S of the above poll (“experiment”) is the set of
all n-tuples (x1, x2, . . . , xn) of 0’s and 1’s. It is the same as the sample space for n
flips of a weighted coin. There is a probability measure P defined on S. For
example,

P(0, 0, 0) = qn

The random variables X1,X2, . . . ,Xn are defined to be functions on S defined by

Xi(x1, . . . , xn) = Xi

So they are random variables - a random variable is a function on a probability
space, that is a set S with equipped with a probability measure P.
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Second Motivating Example
Suppose now we wish to study the expected life of a Gateway ( a computer
company which I think is no longer in business)computer so in this case we
would be studying the random variable XGateway which is defined as follows:

(XGateway = t) means that a randomly selected Gateway computer fails at time t .

A good model for the distribution of XGateway is an exponential distribution with a

definite but unknown mean µ =
1
λ

.
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The new $ 64,000 Question
What is µ?

To answer this question,we obtain a number of
Gateway computers and run them until they break down and record these
results. We may represent the results schematically by

The Xi ’s should be lower case.

Once again, we introduce random variables X1,X2, . . . ,Xn, after we have
decided how many computers we are going to look at etc, but before we actually
test the computers. So schematically we have the “before picture”.

Mathematically testing the n computers amounts to assigning definite definite
numerical values (the failure times)x1, x2, . . . , xn to the random variables
X1,X2, . . . ,Xn.
Hence, X1,X2, . . . ,Xn are random variables with the same probability distribution
as the underlying random variable XGateway.
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Assuming that our test is correctly designed, X1,X2, . . . ,Xn will be independent
so they are identically distributed independent random variables,this will later be
the definition of a random sample. So we say X1,X2, . . . ,Xn is a random sample
from an exponential distribution with parameter.

Once again we have a formal mathematical construction. The sample space S
of the experiment is now the set of all n-tuples (x1, x2, . . . , xn) of positive real
numbers, the possible break-down times for the n computers, to be tested. S is
a probability space (but not discrete). We define the random variables
X1,X2, . . . ,Xn is as functions on S as before:

Xi(x1, . . . , xn) = xi , 1 ≤ i ≤ n.
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Third Motivating Example
Our third motivating example will be the experiment of “choosing n random
numbers from the interval [0, 1]”. We have seen that a good model for “choosing
a random number from [0, 1]” is the uniform distribution U(0, 1). Precisely we
make [0, 1] into a probability space by defining a probability measure P on [0, 1]
by the formula

P(a ≤ X ≤ b) = b − a

(assuming 0 ≤ a ≤ b ≤ 1.
We then define a random variable (function) X on [0, 1] by defining X to be the
identity function I. So we think of evaluating I on an element of [0, 1] as selecting
a random number.
We may represent the probability space [0, 1],P by
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After we choose n random numbers using some procedure for producing
random numbers, we obtain n real numbers x1, x2, . . . , xn in [0, 1].

The Xi ’s should be lower case xi ’s.

Before we make the choices we have random variables X1,X2, . . . ,Xn

representing the first, second, . . ., n-th choice. Schematically we have

The sample space S of all possible choices of n random numbers is given by

S = {(x1, x2, . . . , xn) : xi ∈ [0, 1]}

We have i functions X1, . . . ,Xn defined by Xi : S → [0, 1] where
Xi(x1, x2, . . . , xn) = xi = “the i-th choice” so Xi is a U(0, 1)-random variable. We
note that X1,X2, . . . ,Xn all have U(0, 1)-distribution and are all independent.
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The definition of a random sample
Hopefully, with the three basic examples we have just discussed we have
motivated:

Definition

A random sample of size n is a sequence X1,X2, . . . ,Xn of random variables
such that

(i) X1,X2, . . . ,Xn are independent
AND

(ii) X1,X2, . . . ,Xn all have the same probability distribution i.e. are ”“identically
distributed” often abbreviated to iid.

The probability distribution common to the Xi ’s will be called the “underlying
distribution”- it is the one we are sampling from.

Now we have a second fundamental definition.

Definition

A statistic is a random variable that is a function h(X1,X2, . . . ,Xn) of
X1,X2, . . . ,Xn.
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Three very important statistics

The following statistics will be very important to us.

(1) The sample total T0 defined by

T0 = X1 + X2 + . . .+ Xn

(2) The sample mean

X =
1
n

To =
X1 + X2 + . . .+ Xn

n

(3) The sample variance

S2 =
1

n − 1

 1∑
i=1

(Xi − X)


2
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