
LECTURE 6

Discrete Random Variables and Probability Distributions

Go to “BACKGROUND COURSE NOTES” at the end of my web page and download the file
distributions.

Today we say goodbye to the elementary theory of probability and start Chapter 3. We will
open the door to the application of algebra to probability theory by introducing the concept
“random variable”. What you will need to get from it (at a minimum) is the ability to do the
following “Good Citizen Problems”. I will give you a probability mass function p(x). You will
be asked to compute

(i) The expected value (or mean) E(X).

(ii) The variance V (X).

(iii) The cumulative distribution function F (x).

You will learn what these words mean shortly.

Mathematical Definition. Let S be the sample space of some experiment (mathematically
a set S with a probability measure P ). A random variable X is a real-value function on S.

Intuitive Idea. A random variable is a function whose values have probabilities attached.

Remark . To go from the mathematical definition to the “intuitive idea” is tricky and not
really that important at this stage.

Basic Example. Flip a fair coin three times so

S = {HHH,HHT, HTH,HTT, THH, THT, TTH, TTT}.

Let X be function on X given by

X = number of heads

so X is the function given by

{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}.y y y y y y y y
3 2 2 1 2 1 1 0

What is
P (X = 0), P (X = 3), P (X = 1), P (X = 2)



Answers. Note #(S) = 8

P (X = 0) = P (TTT ) =
1
8

P (X = 1) = P (HTT ) + P (THT ) + P (TTH) =
3
8

P (X = 2) = P (HHT ) + P (HTH) + P (THH) =
3
8

P (X = 3) = P (HHH) =
3
8

We will tabulate this

Value −→ x 0 1 2 3

Probability of that value −→ P (X = x)
1
8

3
8

3
8

1
8

Get use to such tabular presentations.

Rolling a Die. Roll a fair die, let

X = the number that comes up.

So X takes values 1, 2, 3, 4, 5, 6 each with probability 1
6 .

x 1 2 3 4 5 6

P (X = x)
1
6

1
6

1
6

1
6

1
6

1
6

This is a special case of the discrete uniform distribution where X takes values 1, 2, 3, · · · , n
each with probability 1

n (so “roll a fair die with n faces”).

Bernoulli Random Variables. Usually random variables are introduced to make things
numerical. We illustrate this by an important example – next page. First meet some random
variables.

Definition (The simplest random variable(s)). The actual simplest random variable is a ran-
dom variable in the technical sense but isn’t really random. It takes one value (let’s suppose it
is 0) with probability one



x 0
P (X = x) 1

Nobody ever mentions this because it is too simple – it is deterministic. The simplest random
variable that actually is random takes two values, let’s suppose they are 1 and 0 with probabilities
p and q. Since X has to be either 1 or 0 we must have

p + q = 1.

So we get

x 1 0
P (X = x) p q

This is called the Bernoulli random variable with parameter p. So a Bernoulli random
variable is a random variable that takes only two values 0 and 1.

Where do Bernoulli random variables come from?

We go back to elementary probability.

Definition. A Bernoulli experiment is an experiment which has two outcomes which we
call (by convention) “success” S and failure F .

Example (Flipping a coin). We will call a head a success and a tail a failure.

Often we call a “success” something that is in fact far from an actual success – eg., a machine
breaking down. By convention we let P (S) = p and P (F ) = q, so again p + q = 1. Thus, the
sample space S of a Bernoulli experiment is given by

S = {S, F}.

To join up pages 7 and 9 we define a random variable X on S by X(S) = 1 and X(F ) = 0 so
P (X = 1) = P (S) = p and P (X = 0) = P (F ) = q.

Discrete Random Variables

Definition. A subset S of the real line R is said to be discrete if for every whole number n
there are only finitely many elements of S in the interval [−n, n]. So a finite subset of R is
discrete but so is the set of integers Z.

Definition. A random variable is said to be discrete if its set of possible values is a discrete
set.

A possible value means a value x0 so that P (X = xo) 6= 0.



Definition. The probability mass function (abbreviated pmf) of a discrete random variable X
is the function PX defined by

PX(x) = p(x = X)

We will often write p(x) instead of PX(x).

Note:

(i) p(x) ≥ 0

(ii)
∑

all possiblex
p(x) = 1

(iii) p(x) = 0 for all x outside a countable set.

Graphical Representations of pmf’s

There are two kinds of graphical representations of pmf’s, the “line graph” and the “probability
histogram”. We will illustrate them with the Bernoulli distribution with parameter p.

x 1 0
P (X = x) p q

table

q {| |}p
0 1

line graph

q {| |}p
−1

2 0 1
2 1 3

2

histogram

We also illustrate these for the basic example (pg.5)

x 0 1 2 3

P (X = x)
1
8

3
8

3
8

1
8

table

In the next picture (for the probability histogram) the bases of all four rectangles have
length 1 and they are centered at 0,1,2 and 3 respectively. The point is to make the area of
each box equal to the corresponding probability, so the first box has area 1/8, the second has
area 3/8, the third has area 3/8 and the fourth has area 1/8.

The Cumulative Distribution Function
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3/8 3/8
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Figure 1: The probability mass function

0 1 2 3
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Figure 2: The probability histogram

The cumulative distribution function FX (abbreviated cdf) of a discrete random variable X is
defined by

FX(x) = P (X ≤ x).

We will often write F (x) instead of FX(x).

Bank account analogy. Suppose you deposit $1000 at the beginning of every month. The
“line graph” of your deposits is on the previous page. We will use t (time as our variable). Let

F (t) = the amount you have accumulated at time t

What does the graph of F look like?

It is critical to observe that whereas the deposit function is zero for all real numbers except
0, 1, 2, · · · , 11 the cumulation function is never zero between 1 and ∞.

You would be very upset if you walked into the bank on July 5th and they told you your
balance was zero – you never took any money out. Once your balance was nonzero it was never
thereafter.

Back to Probability. The cumulative distribution F (x) is “the total probability you have
accumulated when you get to x”. Once it is nonzero it is never zero again (p(x) ≥ 0 means
“you never take any probability out”).



To write out F (x) in formulas you will need several (many) formulas. There should never be
equalities in your formulas, only inequalities.

The cdf for the Basic Example.

We have

0 1 2 3
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Figure 3: pmf for Bin(3,1/2).

so we start accumulation proability at x = 0.

Ordinary Graph of F

We have
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Figure 4: cdf for Bin(3,1/2).

Formulas for F

F (x) =





0 x < 0

1
8

0 ≤ x < 1

4
8

1 ≤ x < 2

7
8

1 ≤ x < 3

1 3 ≤ x







You can see you have to be careful about the inequalities on the right-hand side.

Expected Value

Definition. Let X be a discrete random variable with set of possible values D and pmf p(x).
The expected value or mean value of X denoted E(X) or µ is defined by

E(X) =
∑

x∈D

xP (X = x) =
∑

x∈D

xp(x).

Remark . E(X) is the whole point for monetary games of chance, e.g., lotteries, blackjack,
slot machines.

If X = your payoff, the operators of these games make sure E(X) < 0. Thorp’s cord-counting
strategy in blackjack changed E(X) < 0 (because ties went to the dealer) to E(X) > 0 to the
dismay of the casinos. See “How to Beat the Dea;er” by Edward Thorp (a math professor at
UC Irvine).

Example . The expected value of the Bernoulli distribution

E(X) =
∑

x

xP (X = x) = (0)(q) + (1)(p) = p.

The expected value for the basic example (so the expected number of heads)

E(X) = (0)(
1
8
) + (1)(

3
8
) + (2)(

3
8
) + (3)(

1
8
) =

3
2
.

The expected value is NOT the most probable value.

For the basic example the possible values of X where 0, 1, 2, 3 and so 3
2 was not even a possible

value
P (X =

3
2
) = 0.

The most probable values were 1 and 2 (tied) each with probability 3
8 .

Rolling a Die

E(X) = (1)(
1
6
) + (2)(

1
6
) + (3)(

1
6
) + (4)(

1
6
) + (5)(

1
6
) + (6)(

1
6
)

=
1
6
[1 + 2 + 3 + 4 + 5 + 6]

=
1
6

(7)(6)
2

=
7
2
.

Variance



The expected value does not tell you everything you want to know about a random variable
(how could it, it is just one number). Suppose you and a friend play the following game of
chance. Flip a coin. If a head comes up you get $1, if a tail comes up you pay your friend $1.
So if X = your payoff

X(H) = +1 , X(T ) = −1

E(X) = (+1)(
1
2
) + (−1)(

1
2
) = 0.

so this is a fair game. Now suppose you play the game changing $1 to $1000. It is still a fair
game

E(X) = (1000)(
1
2
) + (−1000)(

1
2
) = 0

but I personally would be very reluctant to play this game. The notion of variance is designed
to capture the difference between the two games.

Definition. Let X be a discrete random variable with set of possible values D and expected
value µ. Then the variance of X, denoted V (X) or σ2 is defined by

V (X) =
∑

x∈D

(x− µ)2P (X = x)

=
∑

x∈D

(x− µ)2xp(x). (*)

The standard deviation σ of X is defined to be the square-root of the variance

σ =
√

V (X) =
√

σ2.

Check that for the two games above (with your friend) σ = 1 for the $1 game and σ = 1000 for
the $1000 game.

The Shortcut Formula for V (X)

The number of arithmetic operations (subtractions) necessary to compute σ2 can be greatly
reduced by using

Proposition.

(i) V (X) = E(X2)−E(X)2

or

(ii) V (X) =
∑

x∈D x2p(x)− µ2

In the formula (*) you need #(D) subtractions (for each x ∈ D you have to subtract µ then
square ...). For the shortcut formula you need only one. Always use the shortcut formula.

Remark . Logically, versions (i) of the shortcut formula is not correct because we haven’t yet
defined the random variable X2. We will do this soon – “change of random variable”.



Example (The fair die). X = outcome of rolling a die. We have seen (pg. 24)

E(X) = µ =
7
2

E(X2) = (1)2(
1
6
) + (2)2(

1
6
) + (3)2(

1
6
) + (4)2(

1
6
) + (5)2(

1
6
) + (6)2(

1
6
)

=
1
6
[12 + 22 + 32 + 42 + 52 + 62]

=
1
6
[91].

so
E(X2) =

91
6

.

Hence,

V (X) =
91
6
−

(
7
2

)2

=
91
6
− 49

4
.

Remark .

(i) How did I know
12 + 22 + 32 + 42 + 52 + 62 = 91.

This because ∑

k=1

k2 =
n(n + 1)(2n + 1)

6
.

Now plug in n = 6.

(ii) In the formula for E(X2) don’t square the probabilities (that is 1
6)

E(X2) = (12)(
1
6
) + (22)(

1
6
) + ...


