
LECTURE 8

1 The General Distribution

The geometric distribution is a special case of negative binomial, it is the case r = 1. It is so

important we give it special treatment.

Motivating example
Suppose a couple decide to have children until they have a girl. Suppose the probability of

having a girl is p. Let

X = the number of boys that precede the first girl.

Find the probability distribution of X . First X could have any possible whole number value

(although X = 1, 000, 000 is very unlikely).

P (X = k) = P



B B B B G
︸ ︷︷ ︸

k



 .

= qkp (where q = 1 − p).

We have, suppose births are independent. We have motivated

Definition. Suppose a discrete random variable X has the following pmf

P (X = k′) = qkp, 0 ≤ k < ∞.

The X is said to have geometric distribution with parameter p.

Remark . Usually, this is developed by replacing “having a child” by a Bernoulli experiment

and “having a girl” by a “success” (PC). I could have used coin flips.

Proposition. Suppose X has geometric distribution with parameter p. Then

(i) E(X) =
q

p

(ii) V (X) =
q

p2

Proof of (i) (You are not responsible for this).

E(X) = (0)(p) + (1)(qp) + (2)(q2p)

+ · · ·+ (k)(qkp) + · · ·

= p(q + 2q2) + · · ·+ kqk + · · ·



Now
x

(1 − x)2
= x + 2x2 + 3x3 + · · ·+ kxk + · · ·

x



why?

So

E(X) = p

(
q

(1 − q)2

)

= p

(
q

p2

)

=
q

p
.

2 The Negative Binomial Distribution

Now suppose the couple decides they want more girls – say r girls, so they keep having children

until the r-th girl appears. Let

X = the number of boys that precede the r-th girl.

Find the probability distribution of X .

Remark . Sometimes (e.g., pgs 13-14) it is better to write Xr instead of X . Let’s compute

P (X = k)

︸ ︷︷ ︸

k+r−1 people

G
x



r-th

girl

What do we have preceding the r-th girl. Of course we must have r − 1 girls and since we are

assuming X = k we have k boys so k + r − 1 children.

All orderings of boys and girls have the same probability, so

P (X − k) = (?)P (B · · ·B
︸ ︷︷ ︸

k−1

G · · ·G
︸ ︷︷ ︸

r−1

G)

or

P (X = k) = (?)qkpr−1
· p = (?)qkpr

(?) is the number of words of length k + r−1 in B and G using k B’s (whence r−1 G’s). Such
a word is determined by choosing the k slots occupied by the B’s. Hence there are

(
k+r−1

k

)
such

words so

(?) =

(
k + r − 1

k

)

︸ ︷︷ ︸

k+r−1 slots



Choose k slots and put in the B’s

B B B B.

Fill in G’s in the rest of the slots. So

P (X = k) =

(
k + r − 1

k

)

prqk.

So we have motivated the following:

Definition. A discrete random variable X is said to have negative binomial distribution with
parameters r and p if

P (X = k) =

(
k + r − 1

k

)

prqk, 0 ≤ k < ∞.

The text denotes this pmf by nb(x; r, p), so

nb(x; r, p) =

(
k + r − 1

k

)

prqk, 0 ≤ x < ∞.

Proposition. Suppose X has negative binomial distribution with parameters r and p. Then

(i) E(X) = r q
p

(ii) V (X) = r
rq

p2

Waiting Time

The binomial, geometric and negative binomial distributions are all tied to repeating a given

Bernoulli experiment (flipping a coin, having a child) infinitely many times. think of discrete
time 0,1,2,3,... and we repeat the experiment at each of these discrete times – e.g., flip a coin

every minute. Now you can do the following things:

1. Fix a time, say n, and let X = # of successes in that time period. Then X ∼ Bin(n, p).
We should write Xn and think of the family of random variables parameterized by the

discrete time n as the “binomial process”(see pg. 18 – the Poison process).

2. ((discrete) waiting time for the first success). Let Y be the amount of time up to the time
the first success occurs.

This is the geometric random variable. Why? Suppose we have in our boy/girl example

B

0

B

1

B

2 3

B

k−1
︸ ︷︷ ︸

G

k minutes

k boys

.

So in this case,

X = # of boys = k.



but notice the girl arrived at the k-th minute so in the above

Y = K

so
Y = X.

3 Waiting Time for r-th Success

Now let Yr = the waiting time up to the r-th success then there is a difference between Xr and
Yr.

Suppose
Xr = k

so there are k boys before the r-th girl arrives.

0

B

1 2
︸ ︷︷ ︸

G

k+r−1 minutes

k+r slots

k+r−1 people

.

There are k boys and r girls (counting the last girl). The last girls arrives at time k + r − 1 so
if Xr = k then Yr = K = r − 1 so

Yr = Xr + r − 1.

4 The Poisson Distribution

For a change we won’t start with a motivating example but will start with a definition.

Definition. A discrete random variable X is said to have Poisson distribution with parameter
λ if

P (X = k) = e−λ λk

k!
, 0 ≤ k < ∞.

We will abbreviate this to
X ∼ P (λ).

I will now try to motivate the formula which looks complicated.

Why is the fact of e−λ there? It is there to make the total probability equal to 1.

Total Probability =

∞∑

k=0

P (X = k)

=

∞∑

k=0

e−λ λk

k!
= e−λ

∞∑

k=0

λk

k!
.



But from calculus

ex =

∞∑

k=0

xk

k!
.

Total Probability = e−λ · eλ = 1 as it has to be.

Proposition. Suppose

(i) E(X) = λ

(ii) V (X) = λ

Remark . It is remarkable that E(X) = V (X).

Example 3.39
Let X denote the number of creatures of a particular type captured during a given time period.

Suppose X ∼ P (4.5). Find P (X = 5) and P (X ≤ 5).

Solution

P (X = 5) = e−4.5 (4.5)5

5!

(just plug into the formula using λ = 4.5).

P (X ≤ 5) = P (X = 0) + P (X = 1) + P (X = 2)

+ P (X = 3) + P (X = 4) + P (X = 5)

= e−λ + e−λλ + e−λ λ2

2

+ +e−λ λ3

3!
+ e−λ λ4

4!
e−λ λ5

5!
︸ ︷︷ ︸

don’t try to evaluate this

5 The Poisson Process

A very important application of the Poisson distribution arises in counting the number of
occurrences of a certain event in time t.

1. Animals in a trap.

2. Calls coming into a telephone switchboard.

Now we could let t vary so we get a one-parameter family of Poisson random variable

Xt, 0 ≤ t < ∞.

Now a Poisson process is completely determined once we know its mean λ. So for each t, Xt is
a Poisson random variable. so

Xt ∼ P (λ(t)).



So the Poisson parameter λ is a function of t.

In the Poisson process one assume that λ(t) is the simplest possible function of t (aside from a
constant function) namely the linear function

λ(t) = αt.

Necessarily,

α = λ(1) = the average number of animals

captured (or calls) in unit time.

Remark . In the test, page 124, the author proposes 3 axioms on a one parameter family of
random variables Xt so that Xt is a Poisson process, i.e.,

Xt ∼ P (αt).

Example . (from an earlier version of the text). The number of tickets issued by a meter

reader cam be modeled by a Poisson process with a rate of 10 tickets every two hours.

(a) What is the probability that exactly 10 tickets are given out during a particular 12 hour

period.

Solution

We want P (X12 = 10). First find

α = average number of tickets

per unit time.

so

α =
10

2
= 5.

So
Xt ∼ P (5t)

so
X12 ∼ P ((15)(12)) = P (60)

P (X12 = 10) = e−λ λ10

(10)!

= e−60 (60)10

(10)!
.

(b) What is the probability that at least 10 tickets are given out during a 12 hour time period.



We want

P (X12 ≥ 10) = 1− P (X ≤ 9)

= 1−

9∑

k=0

e−λ λk

k!

= 1−
9∑

k=0

e−60 (60)k

k!
︸ ︷︷ ︸

not something you want to

try to evaluate by hand

6 Waiting Time

Again there are waiting time random variables associated to the Poisson process.

Let

Y = waiting time until the first

animal is caught in the trap

and

Yr = waiting time until the r-th

animal is caught in the trap

Now Y and Yr are continuous random variables which we are about to student. Y is exponential

and Yr has a special kind gamma distribution.


