LECTURE 8

1 The General Distribution

The geometric distribution is a special case of negative binomial, it is the case $r=1$. It is so important we give it special treatment.

Motivating example

Suppose a couple decide to have children until they have a girl. Suppose the probability of having a girl is p. Let

$$
X=\text { the number of boys that precede the first girl. }
$$

Find the probability distribution of X. First X could have any possible whole number value (although $X=1,000,000$ is very unlikely).

$$
\begin{aligned}
P(X=k) & =P(\underbrace{\underline{B} \underline{B} \underline{B}-\underline{B} \underline{G}}_{k}) . \\
& =q^{k} p \quad(\text { where } q=1-p) .
\end{aligned}
$$

We have, suppose births are independent. We have motivated
Definition. Suppose a discrete random variable X has the following pmf

$$
P\left(X=k^{\prime}\right)=q^{k} p, 0 \leq k<\infty
$$

The X is said to have geometric distribution with parameter p.
Remark. Usually, this is developed by replacing "having a child" by a Bernoulli experiment and "having a girl" by a "success" $(P C)$. I could have used coin flips.

Proposition. Suppose X has geometric distribution with parameter p. Then
(i) $E(X)=\frac{q}{p}$
(ii) $V(X)=\frac{q}{p^{2}}$

Proof of (i) (You are not responsible for this).

$$
\begin{aligned}
E(X)= & (0)(p)+(1)(q p)+(2)\left(q^{2} p\right) \\
& +\cdots+(k)\left(q^{k} p\right)+\cdots \\
= & p\left(q+2 q^{2}\right)+\cdots+k q^{k}+\cdots
\end{aligned}
$$

Now

$$
\frac{x}{(1-x)^{2}}=x+2 x^{2}+3 x^{3}+\cdots+k x^{k}+\cdots
$$

So

$$
E(X)=p\left(\frac{q}{(1-q)^{2}}\right)=p\left(\frac{q}{p^{2}}\right)=\frac{q}{p} .
$$

2 The Negative Binomial Distribution

Now suppose the couple decides they want more girls - say r girls, so they keep having children until the r-th girl appears. Let

$$
X=\text { the number of boys that precede the } r \text {-th girl. }
$$

Find the probability distribution of X.
Remark . Sometimes (e.g., pgs 13-14) it is better to write X_{r} instead of X. Let's compute $P(X=k)$

What do we have preceding the r-th girl. Of course we must have $r-1$ girls and since we are assuming $X=k$ we have k boys so $k+r-1$ children.

All orderings of boys and girls have the same probability, so

$$
P(X-k)=(?) P(\underbrace{B \cdots B}_{k-1} \underbrace{G \cdots G}_{r-1} G)
$$

or

$$
P(X=k)=(?) q^{k} p^{r-1} \cdot p=(?) q^{k} p^{r}
$$

(?) is the number of words of length $k+r-1$ in B and G using $k B$'s (whence $r-1 G$'s). Such a word is determined by choosing the k slots occupied by the B 's. Hence there are $\binom{k+r-1}{k}$ such words so

$$
(?)=\binom{k+r-1}{k}
$$

Choose k slots and put in the B 's

$$
\underline{B}-\underline{B}-\underline{B}-\underline{B} .
$$

Fill in G 's in the rest of the slots. So

$$
P(X=k)=\binom{k+r-1}{k} p^{r} q^{k} .
$$

So we have motivated the following:
Definition. A discrete random variable X is said to have negative binomial distribution with parameters r and p if

$$
P(X=k)=\binom{k+r-1}{k} p^{r} q^{k}, \quad 0 \leq k<\infty .
$$

The text denotes this pmf by $n b(x ; r, p)$, so

$$
n b(x ; r, p)=\binom{k+r-1}{k} p^{r} q^{k}, \quad 0 \leq x<\infty .
$$

Proposition. Suppose X has negative binomial distribution with parameters r and p. Then
(i) $E(X)=r \frac{q}{p}$
(ii) $V(X)=r \frac{r q}{p^{2}}$

Waiting Time

The binomial, geometric and negative binomial distributions are all tied to repeating a given Bernoulli experiment (flipping a coin, having a child) infinitely many times. think of discrete time $0,1,2,3, \ldots$ and we repeat the experiment at each of these discrete times - e.g., flip a coin every minute. Now you can do the following things:

1. Fix a time, say n, and let $X=\#$ of successes in that time period. Then $X \sim \operatorname{Bin}(n, p)$. We should write X_{n} and think of the family of random variables parameterized by the discrete time n as the "binomial process" (see pg. 18 - the Poison process).
2. ((discrete) waiting time for the first success). Let Y be the amount of time up to the time the first success occurs.

This is the geometric random variable. Why? Suppose we have in our boy/girl example

$$
\underbrace{\frac{B}{0} \quad \frac{B}{1} \quad \frac{B}{2} \quad \frac{}{3} \quad \frac{B}{k-1}}_{k \text { boys }} \quad \frac{G}{k} \text { minutes }
$$

So in this case,

$$
X=\# \text { of boys }=k
$$

but notice the girl arrived at the k-th minute so in the above

$$
Y=K
$$

so

$$
Y=X
$$

3 Waiting Time for r-th Success

Now let $Y_{r}=$ the waiting time up to the r-th success then there is a difference between X_{r} and Y_{r}.

Suppose

$$
X_{r}=k
$$

so there are k boys before the r-th girl arrives.

There are k boys and r girls (counting the last girl). The last girls arrives at time $k+r-1$ so if $X_{r}=k$ then $Y_{r}=K=r-1$ so

$$
Y_{r}=X_{r}+r-1 .
$$

4 The Poisson Distribution

For a change we won't start with a motivating example but will start with a definition.
Definition. A discrete random variable X is said to have Poisson distribution with parameter λ if

$$
P(X=k)=e^{-\lambda} \frac{\lambda^{k}}{k!}, \quad 0 \leq k<\infty
$$

We will abbreviate this to

$$
X \sim P(\lambda)
$$

I will now try to motivate the formula which looks complicated.
Why is the fact of $e^{-\lambda}$ there? It is there to make the total probability equal to 1 .

$$
\begin{aligned}
\text { Total Probability } & =\sum_{k=0}^{\infty} P(X=k) \\
& =\sum_{k=0}^{\infty} e^{-\lambda} \frac{\lambda^{k}}{k!}=e^{-\lambda} \sum_{k=0}^{\infty} \frac{\lambda^{k}}{k!} .
\end{aligned}
$$

But from calculus

$$
e^{x}=\sum_{k=0}^{\infty} \frac{x^{k}}{k!}
$$

Total Probability $=e^{-\lambda} \cdot e^{\lambda}=1$ as it has to be.
Proposition. Suppose
(i) $E(X)=\lambda$
(ii) $V(X)=\lambda$

Remark . It is remarkable that $E(X)=V(X)$.

Example 3.39

Let X denote the number of creatures of a particular type captured during a given time period. Suppose $X \sim P(4.5)$. Find $P(X=5)$ and $P(X \leq 5)$.

Solution

$$
P(X=5)=e^{-4.5} \frac{(4.5)^{5}}{5!}
$$

(just plug into the formula using $\lambda=4.5$).

$$
\begin{aligned}
P(X \leq 5)= & P(X=0)+P(X=1)+P(X=2) \\
& +P(X=3)+P(X=4)+P(X=5) \\
= & e^{-\lambda}+e^{-\lambda} \lambda+e^{-\lambda} \frac{\lambda^{2}}{2} \\
& +\underbrace{+e^{-\lambda} \frac{\lambda^{3}}{3!}+e^{-\lambda} \frac{\lambda^{4}}{4!} e^{-\lambda} \frac{\lambda^{5}}{5!}}_{\text {don't try to evaluate this }}
\end{aligned}
$$

5 The Poisson Process

A very important application of the Poisson distribution arises in counting the number of occurrences of a certain event in time t.

1. Animals in a trap.
2. Calls coming into a telephone switchboard.

Now we could let t vary so we get a one-parameter family of Poisson random variable

$$
X_{t}, \quad 0 \leq t<\infty
$$

Now a Poisson process is completely determined once we know its mean λ. So for each t, X_{t} is a Poisson random variable. so

$$
X_{t} \sim P(\lambda(t))
$$

So the Poisson parameter λ is a function of t.
In the Poisson process one assume that $\lambda(t)$ is the simplest possible function of t (aside from a constant function) namely the linear function

$$
\lambda(t)=\alpha t
$$

Necessarily,

$$
\begin{aligned}
\alpha=\lambda(1)= & \text { the average number of animals } \\
& \text { captured (or calls) in unit time. }
\end{aligned}
$$

Remark. In the test, page 124, the author proposes 3 axioms on a one parameter family of random variables X_{t} so that X_{t} is a Poisson process, i.e.,

$$
X_{t} \sim P(\alpha t)
$$

Example . (from an earlier version of the text). The number of tickets issued by a meter reader cam be modeled by a Poisson process with a rate of 10 tickets every two hours.
(a) What is the probability that exactly 10 tickets are given out during a particular 12 hour period.

Solution

We want $P\left(X_{12}=10\right)$. First find

$$
\begin{aligned}
\alpha= & \text { average number of tickets } \\
& \text { per unit time. }
\end{aligned}
$$

so

$$
\alpha=\frac{10}{2}=5 .
$$

So

$$
X_{t} \sim P(5 t)
$$

so

$$
\begin{aligned}
& X_{12} \sim P((15)(12))=P(60) \\
& \begin{aligned}
P\left(X_{12}=10\right) & =e^{-\lambda} \frac{\lambda^{10}}{(10)!} \\
& =e^{-60} \frac{(60)^{10}}{(10)!} .
\end{aligned}
\end{aligned}
$$

(b) What is the probability that at least 10 tickets are given out during a 12 hour time period.

We want

$$
\begin{aligned}
P\left(X_{12} \geq 10\right)= & 1-P(X \leq 9) \\
= & 1-\sum_{k=0}^{9} e^{-\lambda} \frac{\lambda^{k}}{k!} \\
= & 1-\underbrace{\sum_{k=0}^{9} e^{-60} \frac{(60)^{k}}{k!}} \\
& \text { not something you want to } \\
& \text { try to evaluate by hand }
\end{aligned}
$$

6 Waiting Time

Again there are waiting time random variables associated to the Poisson process.
Let

$$
\begin{aligned}
Y= & \text { waiting time until the first } \\
& \text { animal is caught in the trap }
\end{aligned}
$$

and

$$
\begin{aligned}
Y_{r}= & \text { waiting time until the } r \text {-th } \\
& \text { animal is caught in the trap }
\end{aligned}
$$

Now Y and Y_{r} are continuous random variables which we are about to student. Y is exponential and Y_{r} has a special kind gamma distribution.

