1. Suppose X and Y are random variables defined on the same sample space with the following joint probability mass function.

$\mathrm{X} \backslash \mathrm{Y}$	0	1
0	0	$1 / 4$
1	$1 / 4$	$1 / 2$

(a) Compute the probability mass functions of the random variables X and Y.
(b) Are X and Y independent?
(c) Compute the probability mass function of the random variable $Z=$ $X+Y$.
(d) Compute $\operatorname{Cov}(X, Y)$.
(e) Compute the correlation $\rho_{X, Y}$.
(25 points)
2. Suppose that X and Y are independent random variables defined on the same sample space. Suppose both X and Y have geometric distribution with parameter p. How is the sum $Z=X+Y$ distributed?
(10 points)

TURN THE PAGE

3. Let the pair X and Y have the joint probability mass function of Problem 2 , that is $p_{X, Y}$ is given by the matrix A

$\mathrm{X} \backslash \mathrm{Y}$	0	1
0	0	$1 / 4$
1	$1 / 4$	$1 / 2$

(i) Compute the four conditional probabilities $P(X=0 \mid Y=0), P(X=0 \mid Y=1), P(X=1 \mid Y=0), P(X=1 \mid Y=1)$.
(ii) Arrange the four conditional probabilities you just computed in the 2 by 2 matrix B whose entry in the $(x, y)-t h$ position is the conditional probability $P(X=x \mid Y=y)$.
(Recall that the conditional probability $P(A \mid B)$ of an event A given another event B is given by the formula $P(A \mid B)=\frac{P(A \cap B)}{P(B)}$. You have to interpret each entry in the matrix A given in the beginning of the problem as probability of an intersection of the two events $(X=x)$ and $(Y=y)$. Then you can pass from the entries of the matrix A to the entries of the matrix B.)
(10 points)
4. Suppose X has uniform distribution on $[0,1]$. Let $Y=\sqrt{X}$. Find the density function $f_{Y}(y)$ of Y using the "Engineer's Way".
(5 points)

