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1 Introduction

In this lecture we will derive the formulas for the symmetric two-sided prediction
interval for the n + 1-st observation and the upper-tailed prediction interval for the
n+ 1-st observation from a normal distribution when the variance o is unknown. We
will need the following theorem from probability theory that gives the distribution of
the statistic X — Xn + 1.

Suppose that X7, X, ..., X, X,,11 is a random sample from a normal distribution

with mean g and variance o2.

Theorem 1. The random variable T = (X — X,,11)/(y/ =2S) has ¢ distribution with
n — 1 degrees of freedom.

2 The two-sided prediction interval formula

Now we can prove the theorem from statistics giving the required prediction interval
for the next observation x,; in terms of n observations x1, s, --- ,x,. Note that it
is symmetric around X. This is one of the basic theorems that you have to learn how
to prove. There are also asymmetric two-sided prediction intervals.

Theorem 2. The random interval (X — ta/2n-1 ”T“S . X+ ta/2,n-1 "THS) s a

100(1 — ) %-prediction interval for T, 1.



Proof. We are required to prove
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To prove the last equality draw a picture. [l

Once we have an actual sample zq,xs,...,2, we obtain the the observed value
(T — tajon-11/ 28, T + tajan-11/"Ls) for the prediction (random) interval (X —

ta/2n-11/ ”T“S . X+ ta/2n-14/ ”T“S) The observed value of the prediction (random)

interval is also called the two-sided 100(1 — «)% prediction interval for ;1.

3 The upper-tailed prediction interval

In this section we will give the formula for the upper-tailed prediction interval for the
next observation x, .

Theorem 3. The random interval (X —to n—14/ ™S , 00) is a 100(1—a)%-prediction

interval for the next observation x,.1.

Proof. We are required to prove
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We have
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To prove the last equality draw a picture - I want you to draw the picture on tests
and the final. N

Once we have an actual sample xy,zs,...,2, we obtain the observed value (T —
tan—11/ ”THS, o0) of the upper-tailed prediction (random) interval (X —t4,,_14/ "THS, o0)
The observed value of the upper-tailed prediction (random) interval is also called the
upper-tailed 100(1 — «)% prediction interval for ;1.

The number random variable X —t,,,—14/ "T“S or its observed value T —1, ,,—14/ "T“s

is often called a prediction lower bound for x,; because
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