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Suppose we have n numbers x1, x2, . . . , xn. Then their squared variation

sv = sv(x1, x2, . . . , xn) sv(x1, x2, . . . , xn) =
n∑

i=1
(xi − x)2

Their mean (average) squared variation msv or σ2
n (denoted σ2 and called the

“population variance on page 33 of our text) is given by

msv = σ2
n =

1
n

sv =
1
n

n∑
i=1

(xi − x)2

Here x is the average
1
n

n∑
i=1

xi .
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The msv measure how much the numbes x1, x2, . . . , xn vary (precisely how much
they vary from their average x). For example if they are all equal then they will
be all equal to their average x so

sv = 0 and msv = 0

We also define the sample variance s2 by

S2 =
1

n − 1
sv =

n
n − 1

msv

S2 =
1

n − 1

n∑
i=1

(xi − x)2

Amazingly, s2 is more important then msv in statistics
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The Shortcut Formula for the Squared Variation

Theorem

sv(x1, x2, . . . , xn) =
n∑

i=1

x2
i −

1
n
(

n∑
i=1

xi)
2 (∗)

Proof

Note since x =
1
n

n∑
i=1

xi we have
n∑

i=1
xi = nx

Now
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Proof (Cont.)

=
n∑

i=1

x2
i − 2x(nx) + nx2

=
n∑

i=1

x2
i − 2nx2 + nx2

=
n∑

i=1

x2
i − nx2

=
n∑

i=1

x2
i − n


n∑

i=1
xi

n


2

=
n∑

i=1

x2
i −�n

(
n∑

i=1
xi

)2

��n2

=
n∑

i=1

x2
i −

1
n

 n∑
i=1

xi

2

�
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Corollary 1

Divide both sides of (∗) by n to get

msv =
1
n

n∑
i=1

x2
1 −

1
n2

 n∑
i=1

xi

2

Corollary 2 ((Shortcut formula for s2))

Divide both sides of (∗) by n − 1 to get

S2 = −
1

n − 1

n∑
i=1

x2
i −

1
n(n − 1)

 n∑
i=1

xi

2

It is this last formula that we will need.
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Let met give a conceptual proof of the theorem the way a professorial
mathematician would prove the theorem.

Definition

A polynomial p(x1, x2, . . . , xn) is symmetric, if it is unchanged by permuting the
variables.

Examples 3

p(x, y, z) = x2 + y2 + z2 is symmetric

p(x, y, z) = xy + z2 is not symmetric

Theorem

Any symmetric polynomial pin x1, x2, . . . , xn can be rewritten as a polynomial in

the power sums
n∑

i=1
xk

i that is

p(x1, . . . , xn) = q
(∑

xi ,
∑

x2
1 , . . . ,

∑
x`i

)
if deg p = `.
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Bottom Line

sv =
n∑

i=1
(xi − x)2 is a symmetric polynomial in x1, x2, . . . , xn so there exist a and

b with

sv(x1, x2, . . . ,Xn) = a
n∑

i=1

x2
i + b

 n∑
i=1

xi

2

(∗∗)

This is true for all x1, . . . , xn (an “identify”) so we just choose x1, . . . , xn cleverly to
get a and b.

First choose x1 = 1, x2 = −1, x3 = . . . = xn = 0 so
n∑

i=1
xi = 0 and

n∑
i=1

x2
i = 2

since x = 0

(∗∗) becomes
2 = a2 + b(0) so a = 1
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To find b take all the x ’s to be 1. so x = 1 and sv(1, 1 : 1) = 0 (there is no
variation in the x ’s)

n∑
i=1

x2
1 = n,

n∑
i=1

xi = n so

sv(x1, . . . , xn) =
n∑

i=1

x2
i + b(

∑
xi)

2

gives as

0 = h + bn2 so b = −
1
n

and

sv(x1, x2, . . . , xn) =
n∑

i=1

x2
i −

1
n
(
∑

xi)
2

as before.

Remark 1

Any symmetric quadratic function q(x1, x2, . . . , xn) is a linear combination of
n∑

i=1
x2

1 and (
n∑

i=1
xi)

2 that is

q(x1, . . . , xn) = a
n∑

i=1

x2
i + b

 n∑
i=1

xi

2
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In Which We Return to Statistics
Estimating the Population Variance We have seen that X is a good (the best)
estimator of the population mean-µ, in particular it was an unbiased estimator.

How do we estimate the population variance?
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Answer - use the Sample variance s2 to estimate the population variance σ2

The reason is that if we take the associated sample variance random variable

S2 =
1

n − 1

n−1∑
i=1

(Xi − X)2

then we have

Amazing Theorem

Why do you need
1

n − 1
? We will see.
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Before starting the proof we first note the Corollary 2, page 2 implies

Proposition (Shortcut formula for the sample variance random variable’s)

S2 =
1

n − 1

n∑
i=1

X2
i −

1
n(n − 1)

 n∑
i=1

Xi

2

(b)

Why does this follow from the formula for s2? We will also need the following

Proposition

Suppose Y is a random variable then

E(Y2) = E(Y)2 + V(Y) (#)

Proof.

V(Y) = E(Y2) − (E(Y))2

(Shortcut formula for V(Y) �
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Corollary

Suppose X1,X2, . . . ,Xn is a random sample from a population of mean µ and
variance σ2. Then

(i) E(X2
i ) = µ2 + σ2

(ii) E(T0) = n2µ2 + nσ2

Proof.

(i) E(Xi) = µ and V(Y) = σ2 so plug into (#)

(ii) E(T0) = nµ and V(T0) = nσ2

so plug into (#)

�
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We can now prove (b)

E(S2) = E

 1
n − 1

n∑
i=1

X2
i −

1
n(n − 1)

(
∑

Xi)
2


since E is linear

=
1

n − 1

n∑
i=1

E(X2
i ) −

1
n(n − 1)

E(T2
0 )

by (i) and (ii)

=
1

n − 1

n∑
i=1

(µ2 + σ2) −
1

n − 1
1
n
(n2µ2 + nσ2)

=
1

n − 1

[
nµ2 + nσ2 −

1
n
(n2µ2 + nσ2)

]
=

1
n − 1

[
�
�nµ2 + nσ2 −�

�nµ2 − σ2
]

=
1

n − 1

[
(n − 1)σ2

]
= σ2

Amazing - you need
1

n − 1
not

1
n

.
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