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Go to “BACKGROUND COURSE NOTES” at the end of my web page and
download the file distributions.
Today we say goodbye to the elementary theory of probability and start Chapter
3. We will open the door to the application of algebra to probability theory by
introduction the concept of “random variable”.
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What you will need to get from it (at a minimum) is the ability to do the following
“Good Citizen Problems”.
I will give you a probability mass function P(X). You will be asked to compute

(i) The expected value (or mean) E(X).

(ii) The variance V(X).

(iii) The cumulative distribution function F(x).

You will learn what these words mean shortly.
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Mathematical Definition
Let S be the sample space of some experiment (mathematically a set S with a
probability measure P). A random variable X is a real-valued function on S.

Intuitive Idea
A random variable is a function, whose values have probabilities attached.

Remark

To go from the mathematical definition to the “intuitive idea” is tricky and not
really that important at this stage.
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The Basic Example
Flip a fair coin three times so

S = {HHH, HHT , HTH, HTT , THH, THT , TTH, TTT }

Let X be function on X given by

X = number of heads

so X is the function given by

{HHH, HHT , HTH, HTT , THH, THT , TTH, TTT }
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

3 2 2 1 2 1 1 0

What are
P(X = 0), P(X = 3), P(X = 1), P(X = 2)
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Answers
Note ](S) = 8

P(X = 0) = P(TTT) =
1
8

P(X = 1) = P(HTT) + P(THT) + P(TTH) =
3
8

P(X = 2) = P(HHT) + P(HTH) + P(THH) =
3
8

P(X = 3) = P(HHH) =
1
8

We will tabulate this

Value X 0 1 2 3

Probability of the value P(X = x)
1
8

3
8

3
8

1
8

Get used to such tabular presentations.
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Rolling a Die
Roll a fair die, let

X = the number that comes up

So X takes values 1, 2, 3, 4, 5, 6 each with probability
1
6

.

X 1 2 3 4 5 6

P(X = x)
1
6

1
6

1
6

1
6

1
6

1
6

This is a special case of the discrete uniform distribution where X takes values

1, 2, 3, . . . , n each with probability
1
n

(so roll a fair die with n faces”).
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Bernoulli Random Variable
Usually random variables are introduced to make things numerical. We illustrate
this by an important example - page 8. First meet some random variables.

Definition (The simplest random variable(s))

The actual simplest random variable is a random variable in the technical sense
but isn’t really random. It takes one value (let’s suppose it is 0) with probability
one

X 0
P(X = 0) 1

Nobody ever mentions this because it is too simple - it is deterministic.
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The simplest random variable that actually is random takes TWO values, let’s
suppose they are 1 and 0 with probabilities p and q. Since X has to be either 1
on 0 we must have

p + q = 1.

So we get

X 0 1
P(X = x) q p

This called the Bernoulli random variable with parameter p. So a Bernoulli
random variable is a random variable that takes only two values 0 and 1.
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Where do Bernoulli random variables come from?
We go back to elementary probability.

Definition

A Bernoulli experiment is an experiment which has two outcomes which we call
(by convention) “success” S and failure F.

Example

Flipping a coin. We will call a head a success and a tail a failure.

Z Often we call a “success” something that is in fact for from an actual success-
e.g., a machine breaking down.
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In order to obtain a Bernoulli random variable if we first assign probabilities to S
and F by

P(S) = p and P(F) = q

so again p + q = 1.
Thus the sample space of a a Bernoulli experiment will be denoted S (note that
that the previous caligraphic S is different from Roman S) and is given by

S = {S,F}.

We then obtain a Bernoulli random variable X on S by defining

X(S) = 1 and X(F) = 0

so
P(X = 1) = P(S) = p and P(X = 0) = P(F) = q.
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Discrete Random Variables

Definition

A subset S of the red line R is said to be discrete if for every whole number n
there are only finitely many elements of S in the interval [−n, n].

0

So a finite subset of R is discrete but so is the set of integers Z.
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Remark

The definition in the text on page 98 is wrong. The set of rational numbers Q is
countably infinite but is not discrete. This is not important for this course but I
find it almost unbelievablel that the editors of this text would allow such an error
to run through nine editions of the text.

Definition

A random variable is said to be discrete if its set of possible values is a discrete
set.

A possible value means a value x0 so that P(X = x0) , 0.
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Definition

The probability mass function (abbreviated pmf) of a discrete random variable X
is the function pX defined by

pX (x) = P(X = x)

We will often write p(x) instead of PX (x).
Note

(i) p(x) ≥ 0

(ii)
∑

all possible
X

p(x) = 1

(iii) p(x) = 0 for all X outside a discrete set.
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Graphical Representations of Proof’s
There are two kinds of graphical representations of proof’s, the “line graph” and
the “probability histogram”. We will illustrate them with the Bernoulli distribution
with parameter P.

X 1 0
P(X = x) p q table

0 1

line graph

0 1

histogram
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We also illustrate these for the basic example (pg. 5).

X 0 1 2 3
P(X = x) 1

8
3
8

3
8

1
8 table

0 1 2 3

0 1 2 3
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The Cumulative Distribution Function
The cumulative distribution function FX (abbreviated cdf) of a discrete random
variable X is defined by

FX (x) = P(X ≤ x)

We will often write F(x) instead of FX (x).

Bank account analogy
Suppose you deposit 1000 at the beginning of every month.

1000 ``live graph''
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The “line graph” of your deposits is on the previous page. We will use t (time as
our variable). Let
F(t) = the amount you have accumulated at time t .
What does the graph of F look like?

5000    etc
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It is critical to observe that whereas the deposit function on page 15 is zero for
all real numbers except 12 numbers (Here I am replacing the symbols for the
months e.g. J by the numbers 1 through 12) the cumulative distribution function
is never zero between 1 and ∞. You would be very upset if you walked into the
bank on July 5th and they told you your balance was zero - you never took any
money out. Once your balance was nonzero it was never zero thereafter.
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Back to Probability
The cumulative distribution F(x) is “the total probability you have accumulated
when you get to x”. Once it is nonzero it is never zero again (p(x) ≥ 0 means
“you never take any probability out”).
To write out p(x) in formulas you will need several (many) formulas. There
should never be EQUALITIES in you formulas only INEQUALITIES.
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The cdf for the Basic Example
We have

0 1 2 3

line graph of

So we start accumulation probability at X = 0

Ordinary Graph of F

0 1 2 3

1
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Formulas for F 

0 x ≤ 0
1
8 0 ≤ x < 1
4
8 1 ≤ x < 2
7
8 1 ≤ x < 3

1 3 ≤ x


←− be careful

You can see you here to be careful about the inequalities on the right-hand side.
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The relation between p and F

We will need the relation between the probability mass function p(x) and the
cumulative distribution function F(x). Recall that if F(x) is a function of an
integer variable x then the backward difference function (discrete derivative)
∆F of F is defined by

∆F(x) = F(x) − F(x − 1).

The relation we want is

Theorem 1

p(x) = ∆F(x)
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Expected Value

Definition

Let X be a discrete random variable with set of possible values D and pmf p(x).
The expected value or mean value of X denote E(X) or µ (Greek letter mu) is
defined by

E(X) =
∑
x∈D

×P(X = x) =
∑
x∈D

×p(x)

Remark

E(X) is the whole point for monetary games of chance e.g., lotteries, blackjack,
slot machines.
If X = your payoff, the operators of these games make sure E(X) < 0. Thorp’s
card-counting strategy in blackjack changed E(X) < 0 (because ties went to the
dealer) to E(X) > 0 to the dismay of the casinos. See “How to Beat the Dealer”
by Edward Thorp (a math professor at UCIrvine).
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Examples

The expicted value of the Bernoulli distribution.

E(X) =
∑

x

×P(X = x) = (0)(q) + (1)(p)

= P

The expected value for the basic example (so the expected number of needs)

E(X) = (0)

(
1
8

)
+ (1)

(
3
8

)
+ (2)

(
3
8

)
+ (3)

(
1
8

)
=

3
2

Z The expected value is NOT the most probable value.
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Examples (Cont.)

For the basic example the possible values of X where 0, 1, 2, 3 so 3/2 was not
even a possible value

P (X = 3/2) = 0

The most probable values were 1 and 2 (tied) each with probability 3/8.

E(X) = (1)

(
1
6

)
+ (2)

(
1
6

)
+ (3)

(
1
6

)
+ (4)

(
1
6

)
+ (5)

(
1
6

)
+ (6)

(
1
6

)
=

1
6

[1 + 2 + 3 + 4 + 5 + 6] =
1
6

(6)(7)

2

= 7/3.

Rolling of a Die
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Variance
The expected value does not tell you everything you went to know about a
random variable (how could it, it is just one number). Suppose you and a friend
play the following game of change. Flip a coin. If a head comes up you get §1. If
a toil comes up you pay your friend §1. So if X = your payoff.

X(11) = +1, X(T) = −1

E(X) = (+1)

(
1
2

)
+ (−1)

(
1
2

)
= 0

so this is a fair game.
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Now suppose you play the game changing §1 to §1000. It is still a fair game

E(X) = (1000)

(
1
2

)
+ (−1000)

(
1
2

)
= 0

but I personally would be very reluctant to play this game.
The notion of variance is designed to capture the difference between the two
games.
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Definition

Let X be a discrete random variable with set of possible values D and expected
value µ. Then the variance of X, denoted V(X) or σ2 (sigma squared) is defined
by

V(X) =
∑
x∈D

(x − µ)2P(X = x)

=
∑
x∈D

(x − µ)2P(x) (*)

The standard deviation σ of X is defined to be the square-root of the variance

σ =
√

V(X) =
√
σ2
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Definition (Cont.)

Check that for the two games above (with your friend)
σ = 1 for the §1 game
σ = 1000 for the §1000 game.

The Shortcut Formula for V(X)

The number of arithmetic operations (subtractions) necessary to compute σ2

can be greatly reduced by using.

Proposition

(i) V(X) = E(X2) − E(X)2

or

(ii) V(X) =
∑

x∈D
X2P(X) − µ2
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Proposition (Cont.)

In the formula (*) you need ](D) subtractions (for each x ∈ D you here to
subtract µ then square ...). For the shortcut formula you need only one. Always
use the shortcut formula.

Remark

Logically, version (i) of the shortcut formula is not correct because we haven’t yet
defined the random variable X2.
We will do this soon - “change of random variable”.
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Example (The fair die)

X = outcome of rolling a die.
We have seen (pg. 24)

E(X) = µ =
7
2

E(X2) = (1)2
(
1
6

)
+ (2)2

(
1
6

)
+ (3)2

(
1
6

)
+ (4)2

(
1
6

)
+ (5)2

(
1
6

)
+ (6)2

(
1
6

)
=

1
6

[
12 + 22 + 32 + 42 + 52 + 62

]
=

1
6

[91]←− later

So
E(X2) =

91
6

Here

don't forget

to square 
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Remarks

(1) How did I know
12 + 22 + 32 + 42 + 52 + 62 = 91

This because
n∑

k=1

k 2 =
n(n + 1)(2x + 1)

6

Now plug in n = 6.

(2) In the formula for E(X2) don’t square the probabilities

Not squared

first value

   squared
second value

   squared
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