1. A contractor makes large purchases of cement from a local manufacturer. The bags of cement are supposed to weight 94 pounds. The contractor decides to test a sample of bags to see if he is getting his money's worth. He weighs 10 bags and gets the following weights: $94.1,93.4,92.8,93.4,95.4,93.5,94.0,93.8,92.9$ and 94.2.
(i) Perform the appropriate lower-tailed hypothesis test (this means test $\mu=$ 94 against $\mu<94$).
State the values of \bar{x}, s, p and t. Compare p to 0.1 and decide what the contractor should conclude at the level level 0.1.
(ii) Compute a lower-tailed 90% confidence interval for the true mean weight of a bag of cement produced by the manufacturer based on these date.
(Warning: In part (ii) you are finding a one-sided confidence interval for μ. The TI-83 calculator doesn't do this. So use your results from part (i) for \bar{x} and s and plug them into the formula for the lower-tailed confidence interval.)
(iii) Is 94 in the lower-tailed confidence interval for μ ? On the basis of your answer to this question do you accept or reject H_{0} using the confidence interval test which I explained in class?
(20 points)
2. Look up the test for a population proportion on page 335 of Edition 5 or page 340 of Edition 6 and do the following problem.
(i) A manufacturer of nickel-hydrogen batteries randomly selects 100 nickel plates for test cells, cycles them a specified number of times and determines that 14 of the plates failed. Does this provide compelling evidence for concluding that more than 10% of all plates fail under such circumstances. State and test the appropriate hypothesis using a significance level of .05 .
Now look up the formula for β for this test on page 336 of Edition 5 or page 341 of Edition 6 and do the following problem (turn the page).
(ii) If it is really the case that 15% of the plates will fail under such circumstances and a sample size of 100 is used, how likely is it that the null hypothesis of part (a) will not be rejected by the level .05 test.
(20 points)
3. Suppose $X_{1}, X_{2}, \ldots, X_{n}$ is a random sample from a Poisson distribution with parameter λ. It can be proved that if n is large then $Z=\frac{\bar{X}-\lambda}{\sqrt{\lambda / n}}$ has an approximately normal distribution with mean 0 and variance 1 .

Give a decision rule for testing

$$
\begin{aligned}
& H_{0}: \lambda=\lambda_{0} \\
& \text { versus } \\
& H_{a}: \lambda<\lambda_{0}
\end{aligned}
$$

at level α and prove that your test has approximate significance level α.
(Hint: your test should look like:
reject H_{0} if $\bar{x} \leq \lambda_{0}-c$ for the appropriate c depending on α, λ_{0} and n.)
(10 points)

