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1. Introduction

More than most topics, symbolic dynamics is defined by its problems. Many of
the most natural problems (e.g., when do two matrices define topologically conju-
gate shifts of finite type) have been open for a long time. Many of the problems in
this survey are, so far as I can tell, very difficult; on the other hand, this is a subject
in which a clever idea or example will sometimes make a longstanding problem look
easy.

With some exceptions, I’ve tried to focus on sharp problems rather than the
broader investigations they represent. I’ll be satisfied if any mathematician is
spurred by this survey to solve any of the problems it contains. I’m also think-
ing of this survey as a snapshot from today.

The price of including many problems has been that in many cases the presen-
tation is quite condensed. However, I’ve also included two appendices which give
a little exposition of the underappreciated “textile systems” theory of Nasu. The
other appendices contain previously unpublished results relevant to some of the
open problems.

This survey is concerned overwhelming with “internal” questions of symbolic dy-
namics (whatever it is), rather than its applications. For example, there is nothing
about the use of symbolic dynamics in geometry (see [99] for a survey of symbolic
representations of geodesics on surfaces of constant negative curvature) or in ap-
plications to specific nonsymbolic systems. Another omission is any problem on
automatic sequences; here, consult the excellent [3, 189] for background and many
open problems.

The bibliography is huge, but it (and the paper) would be much longer if there
were an attempt to record all the significant contributions to the problems consid-
ered. I’ve tried to include enough references that someone interested in a problem
will find the appropriate papers and contributions, and apologize to those neglected.

The survey naturally reflects my own biases and interests, and I’m grateful to the
experts whose input has ameliorated that tendency, however modestly. For feed-
back, suggestions and corrections, I especially thank Valerie Berthe, Jerome Buzzi,
Fabien Durand, Bruce Kitchens, Alejandro Maass, Kengo Matsumoto, Masakazu
Nasu, Marcus Pivato and Jeff Steif. I’m also grateful to Larry Washington for help
with the number theory in Appendix E. Most of this paper was written as a guest
of Universidad de Chile in Santiago; I was very fortunate to work in such a friendly,
beautiful and stimulating environment.
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2. Definitions

We assume some familiarity with basic symbolic dynamics. Good introductions
can be found in the standard texts [127, 119] (also see [16, 126]). Still, we give some
background and definitions now.

Let A be an n×nmatrix with entries from the nonnegative integers Z+ = N∪{0}.
Let GA be a directed graph with vertices 1, 2, . . . , n such that A(i, j) is the number
of edges from vertex i to vertex j. Let E be the edge set of GA. Let EZ have
the product topology of the discrete topology. The shift map σ : EZ → EZ is
defined by (σx)(n) = x(n+ 1). This is the full shift on alphabet E (it is a version
of the full shift on |E| symbols). Let ΣA be the set of x in EZ corresponding to
legal walks through GA (i.e., for all n the terminal vertex of x(n) equals the initial
vertex of x(n + 1)). Then ΣA is compact metrizable and shift invariant. The
restriction σA of σ to ΣA is an edge shift of finite type (edge SFT). (Often ΣA is
called an SFT, or the same symbol is used for both the map and the space. Context
clarifies this.) An SFT is any topological dynamical system which is topologically
conjugate (isomorphic) to an edge SFT. The restriction of the shift to a closed
invariant subset X of a full shift Y is SFT if and only if there is a finite set W such
that X = {x ∈ Y : ∀i, j xi · · ·xj /∈ W}.

A onesided SFT is defined in just the same fashion, but with the use of EZ+

(onesided sequences) in place of EZ. A onesided SFT is a continuous open map,
but is rarely injective.

We may also begin with a finite set E (no longer edges) and the compact metriz-
able space EZd

. For d ≥ 1, the Zd shift action on EZd

is defined for m,n in Zd by
(σnx)(m) = x(m + n). A Zd SFT X is defined for d > 1 as it was for d = 1; the
domain is the set of all x in EZd

which avoid some finite set of finite configurations.
(That is, there are finite subsets S1, . . . , Sk of Zd, and functions fi : Si → E, such
that X is the set of all x ∈ EZd

such that ∀n ∈ Zd, the restriction of x to n + Si

does not equal fi.) If we write just SFT, we will mean a Z SFT.
A sofic shift is a subshift which is the image of an SFT under a block code; i.e. it

is a subshift which is a quotient, or factor, of an SFT. A Zd sofic shift is a similarly
a Zd subshift which is a quotient of a Zd SFT.

Let R be a semiring containing 0 and 1 (additive and multipicative identities).
Matrices A,B over R (i.e. with entries in R) are elementary strong shift equivalent
over R (ESSE-R) if there exist matrices U, V over R such that A = UV and
B = V U . They are strong shift equivalent over R (SSE-R) if there is an ` ∈ N
and matrices A = A0, A1, . . . , A` = B such that Ai and Ai+1 are (ESSE-R) for
0 ≤ i < `. Here ` is called the lag of the given strong shift equivalence. A and
B are shift equivalent over R (SE-R) if there exist matrices U, V and a positive
integer ` such that the following equations hold:

A` = UV , B` = V U , AU = UB , V A = BV .

The integer ` is called the lag of the given shift equivalence.
Square matrices A,B over Z+ define topologically conjugate edge SFTs if and

only if A and B are SSE-Z+; also Ak, Bk are SSE-Z+ for all but finitely many k ∈ N
if and only if A and B are SE-Z+.

Let A be an n × n matrix with integer entries, acting on row vectors. Define
VA as the image of Qn under An and GA = {v ∈ VA : ∃k > 0, vAk ∈ Zn}. The
group GA is a concrete version of the direct limit group lim−→A

Zn, convenient for
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our purposes. We will call GA a dimension group, although we will not need to
consider the natural order structure which makes it a (stationary) dimension group.
The dimension module GA of the matrix A (or SFT σA) is the group GA together
with its group automorphism Â defined by v 7→ vA. For notation below, let Â
be identified with a matrix which acts like A on VA and annihilates ker(An); and
identify (Â)−1 with a matrix which is the inverse isomorphism on VA and also
annihilates ker(An).

Suppose f : X → X is a continuous map. An automorphism of f is a homeo-
morphism commuting with f , and Aut(f) is the automorphism group of f . If φ is
an automorphism of an SFT σA, then φ acts on the dimension module GA (that is,
it defines a group isomorphism φ̂ : GA → GA which commutes with Â). This may
be defined in terms of the action of φ on certain subsets of ΣA, following Krieger
[43]. Here we will give the Wagoner definition in terms of matrices [190].

Let A = UV,B = V U be an elementary strong shift equivalence over Z+. We
view the vertex sets of the directed graphs GA GB as disjoint. We view U as the
adjacency matrix for a set of edges from GA vertices to GB vertices, and similarly
V for edges from GA. Say uv is a U, V path from i to j if, for some k, u is a U
edge from i to k and v is a V edge from k to j. Now the number of edges in EA
from vertex i to vertex j equals the number of U, V paths from i to j; and a similar
statement holds for B, V, U . Thus we can rename elements of EA and EB as U, V
and V,U paths.

Now a point x in ΣA is

x = ...x−1x0x1 . . . = ...(u−1v−1)(u0v0)(u1v1) . . . .

The ESSE of forward type defined by the pair (U, V ) is simply the map which sends
this x to the point

y = ...y−1y0y1 . . . = ...(v−1u0)(v0u1)(v1u2) . . . .

A forward conjugacy is a composition of ESSE’s of forward type. Any topological
conjugacy φ from an SFT σA to an SFT σB is a composition of ESSEs of forward
type, given say by (U1, V1), (U2, V2), . . . (U`, V`), followed by some (possibly nega-
tive) power k of the shift. The induced isomorphism GA → GB is then defined by
v 7→ vU1U2 · · ·U`B̂

k (the isomorphism depends on φ, not on the particular chain
of matrices used to implement φ). When A = B, this isomorphism is φ̂. The map
from Aut(σA) defined by φ→ φ̂ is the dimension representation.

3. Classification of SFTs and the Little Shift Equivalence
Conjecture

Conjecture 3.1 (“Little shift equivalence conjecture”). Suppose A is a nonnegative
matrix over Z which has a unique and simple nonzero eigenvalue n. Then A is
strong shift equivalent over Z+ to [n].

Conjecture 3.1 is a concrete instance of the following central problem of symbolic
dynamics.

Problem 3.2. Classify SFTs up to topological conjugacy. In particular, give a
procedure which decides when A and B define topologically conjugate SFTs.
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Of course, one could take the view that providing the requested decision proce-
dure is the same as providing a classification; on the other hand, one could hope
for some additional conceptual structure.

At present we have no conjectural solution to Problem 3.2. For many years,
the best hope was Williams’ Conjecture [192]: if A and B are shift equivalent over
Z+, then they are strong shift equivalent over Z+. (So in general, we now say a
Williams problem is to determine in some class whether shift equivalence implies
strong shift equivalence [21].) The conjecture was refuted by Kim and Roush, first
in the reducible case [109] and then in the primitive case [112]. Their arguments
took place within an algebraic-topology classification structure developed over years
by Wagoner; see [190] and its references for this very interesting story and further
approaches to the classification problem. We make some remarks.

(1) If Z+ in Conjecture 3.1 is replaced by Q+, then by work of Kim and Roush
[103] the conjecture is known to be true (see Section 5).

(2) The Kim-Roush argument establishing two matrices A,B as counterexam-
ples to Williams’ Conjecture appeals in particular to zero/+ patterns in
traces of powers of the matrices A,B. The traces of all powers of matrices
involved in 3.1 are positive.

(3) It is very easy to classify irreducible SFTs given a classification for mixing
SFTs. So, Problem 3.2 naturally splits into the mixing case (where the
Wagoner setting used in [112] applies, because primitive matrices over Z
are SSE-Z iff they are SE-Z+) and the reducible case (for this see Section
4).

(4) The idea of strong shift equivalence allows a unified approach to several
classification problems in symbolic dynamics, including Problem 3.2. There
is another general approach to these problems, the “positive K-theory”
[23, 49]. This approach may be relevant to the solution of Problem 3.2.

Conjecture 3.1 is a special case of Williams’ Conjecture. Currently, we essentially
have no general sufficient conditions for existence of a conjugacy between given σA

and σB .
By special methods, Williams’ Conjecture is known to be true if A and B are

both 2× 2 AND have determinant ≥ −1 [9, 62, 192]. Kirby Baker has more to say
about some small matrices [10].

Here are a few specific open instances of Williams’ problem.

(1) Suppose A and B are 2×2 and SE over Z+ with determinant less than −1.
Must A and B be SSE over Z+?

(2) Let A be “Ashley’s eight-by-eight”, the 8 × 8 matrix which is the sum of
the permutation matrices for the permutations which in cycle notation are
(12345678) and (1)(2)(374865). Then A is SE-Z+ to [2]. Is A SSE-Z+ to
[2]?

Up to symmetries of A, this question is [119, Example 2.2.7] and it is
due to Jon Ashley in 1989 [119, Chapter notes, p.60]. For any matrix B
SE over Z+ to [2], there is k ∈ N such that B is SSE over Z+ to a matrix
of size 2k with all row sums and all column sums equal to [2] [134]. Except
for A (and some matrices SSE over Z+ to A by natural symmetries), all
such matrices B of size 2k with k ≤ 3 were checked by Ashley and found to
be SSE-Z+ to the 1× 1 matrix [2] [Jon Ashley, personal communication].
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(3) Given k ≥ 2 ∈ N, define the matrices

Ak =
(

1 k
k − 1 1

)
and Bk =

(
1 k(k − 1)
1 1

)
.

Then Ak is SE-Z+ to Bk, but for k ≥ 4 it is not known if Ak is SE-Z+ to
Bk [127, Example 7.3.13]

For more on strong shift equivalence see [86, 127, 21, 190] and their references.

4. Range of the dimension representation

Let σA be a mixing SFT, defined by a primitive matrixA over Z+, with dimension
module GA. Let Aut+(GA) denote the group of positive automorphisms of the
dimension module GA; these are the module automorphisms of GA which multiply
the Perron eigendirection of A by a positive number.

For example, with A = [18], as a group GA is isomorphic to Z[1/18]; all isomor-
phisms from this group to itself commute with the action of A; these isomorphisms
are multiplication by a number of the form ±2i3j with (i, j) ∈ Z2; and finally for
the positivity condition we allow only 2i3j , so that in this case the group Aut+(GA)

is isomorphic to Z2. For A =
(

1 1
1 0

)
, as a group GA is isomorphic to Z2, but

the only elements of GL(2,Z) commuting with A have the form ±An, n ∈ Z, and
therefore Aut+(GA) is isomorphic to Z.

If φ is an automorphism of σA, then φ induces a positive isomorphism φ̂ : GA →
GA. The map

ρA : Aut(σA)→ Aut+(GA)

φ 7→ φ̂

is the dimension representation of the automorphism group of SA. An automor-
phism is inert if it is in the kernel of the dimension representation.

Problem 4.1. Given a mixing SFT SA, determine the range of its dimension
representation.

In general the dimension representation is not surjective [114]. The known ob-
struction involves the sign-gyration-compatibility-homomorphism SGGC, which is
a homomorphism from Aut(σA) which for each n assigns to an element U of Aut(σA)
an element SGCCn(U) of Z/n which is computed from the action of U on points
of periods n, n/2, n/4, .... The Factorization Theorem of Kim, Roush and Wagoner
shows that SGCC is determined by and computable from the dimension represen-
tation [114, 112]. It can happen for a specific element r of Aut+(GA) and n ∈ N
that r can be in the range of ρA only if SGCCn is nontrivial, while σA has no points
of period n, n/2, n/4, ... [114]. In this case r cannot be in the range of ρA. It is not
known whether this type of SGCC obstruction is the only obstruction to realizing
an element in the range of ρA.

We note two significant applications for a solution of Problem 4.1.
(1) (Classification of shifts of finite type up to topological conjugacy.) Given

a classification for irreducible SFTs, the classfication of general (possibly
reducible) SFTs requires the solution of Problem 4.1, and can be reduced
to a solution of Problem 4.1 [109, 108].
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(2) (Solution of the extension problem.) The extension problem is to charac-
terize which automorphisms of subsystems of a mixing SFT σA extend to
automorphisms of σA. Following [115, 116], we know exactly which auto-
morphisms of finite (or more generally proper [39]) subsystems of a mixing
SFT σA extend to automorphisms of σA which act trivially on the dimen-
sion group of σA. By the Factorization Theorem, the extension problem
then reduces (at least in the typical case that Aut+(GA) is finitely generated
[43]) to knowing the range of the dimension representation.

Following earlier constructions [43, 29, 39, 148], Kim, Roush and Wagoner devel-
oped powerful (but difficult) new “positive K-theory” methods for constructing
automorphisms [115, 116, 110], which may be relevant to solving Problem 4.1.

5. Positive Rational Shift Equivalence Conjecture

Conjecture 5.1 (Positive Rational Shift Equivalence Conjecture). Suppose A,B
are square positive matrices which are shift equivalent over Q+ Then A,B are strong
shift equivalent over Q+.

Kim and Roush ([103], following [107, 106, 105, 101] proved Conjecture 5.1 under
the assumption that A (and thus also B) has a single nonzero eigenvalue, n. There is
no other result known which gives a classification up to SSE over Q+ of all primitive
matrices in the SE-Q+ class of a primitive matrix over Q. The corresponding
statement for Z is the “Little Shift Equivalence Conjecture” 3.1.

The approach Kim and Roush developed for their argument analyzes paths of
matrix similarities over R, associated covers of the paths by neighborhoods yielding
an elementary similarity, and the use of these and compactness (the covers have
finite subcovers) to find chains of elementary SSE’s over Q+. This framework is
rather general and may be very relevant to Conjecture 5.1.

The Rational Shift Equivalence Conjecture is obtained by deleting the word
“positive” from Conjecture 5.1; it is also open. The positive case seems to be the
correct first step. The great advantage of positive matrices, exploited by Kim and
Roush, is that they are stable under perturbation.

A primitive matrix over Q+ with positive trace is SSE over Z+ to a positive
matrix; this is a special case of a much stronger result of Kim and Roush [101,
Theorem 6.5]. Thus Conjecture 5.1 is really a conjecture for primitive matrices
over Q+ with positive trace, which is a major special case for the general problem
of deciding when matrices are strong shift equivalent over Q+.

It is natural to ask whether Conjecture 5.1 might be true if Q were replaced by
some other nondiscrete subring of R. In Appendix E, we will see that the Rational
Shift Equivalence Conjecture would be false if in its statement Q were replaced by
Z[1/p] with p a rational prime. However, we have no example of a unital subring
S of R and two positive matrices which are shift equivalent over S+ and which are
not strong equivalent over S+.

6. The Generalized Spectral Conjecture

For SFTs, in addition to knowing when they are topologically conjugate, we
would like to understand the class of matrices which occur as their defining non-
negative integral matrices. The fundamental problem here (as explained in [33]) is
to understand what matrices are primitive integral matrices. This is addressed by
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the S = Z cases of the next two conjectures of myself and David Handelman. We
say that a k-tuple Λ of complex numbers is the nonzero spectrum of a matrix A if
for some j ≥ 0 its characteristic polynomial χA(t) equals tj(t−λ1) · · · (t−λk). For
n ∈ N, we define

tr(Λn) =
k∑

i=1

(λi)n

trn(Λ) =
∑
j:j|n

µ
(n
j

)
tr(Λj)

where µ is the Mobius function. For example,

tr12(Λ) = tr(Λ12)− tr(Λ6)− tr(Λ4) + tr(Λ2) .

Conjecture 6.1 (Spectral Conjecture). Let S be a unital subring of R and let
Λ = (λ1, . . . , λk) be a k-tuple of complex numbers. Then Λ is the nonzero spectrum
of a primitive matrix over S if and only if the following necessary conditions hold.

(1) (Perron condition) There exists i such that λi is a positive real number and
λi > |λj | if j 6= i and 1 ≤ j ≤ k.

(2) (Galois condition) The polynomial (t − λ1) · · · (t − λk) has all coefficients
in S.

(3) (Trace condition) If S 6= Z, then the following hold for all n ∈ N:
• tr(Λn) ≥ 0
• if j divides n and tr(Λj) > 0 then tr(Λn) > 0.

If S = Z, then trn(Λ) ≥ 0, for all n ∈ N.

Strong shift equivalence is an appropriate stable version of similarity (see [23],
following [133]); from this viewpoint, the next conjecture is a realization conjecture
for the stable algebraic structure of primitive matrices.

Conjecture 6.2 (Generalized Spectral Conjecture [33, 21]). Suppose S is a unital
subring of R, A is a square matrix with entries in S and the nonzero spectrum of A
satisfies the conditions of the Spectral Conjecture. Then A is strong shift equivalent
over S to a primitive matrix.

The Spectral Conjecture was proved for S = R and various other cases in [33], and
by completely different methods in [113] for the key case S = Z. (From the Z result,
we understand completely the possible zeta functions of mixing, irreducible and
general shifts of finite type.) It should be possible to adapt the (very complicated)
argument of [113] to the case S 6= Z. The Generalized Spectral Conjecture was
proved for S = Z (and thus Q) in [34] for the special case that all elements of the
nonzero spectrum are rational. There is a related result with different methods in
[42].

7. The Equal Entropy Factors Conjecture for SFTs

A subshift T is a factor or quotient of a subshift S if there is a continuous
surjection φ (a factor map) between their domains such that φS = Tφ. One of the
basic questions about SFTs is when one is a factor of another. For SFTs, the main
case of interest is the case in which the SFTs under consideration are irreducible.

If T is a factor of S, then h(T ) ≤ h(S). Given mixing SFTs S, T with h(S) >
h(T ), the shift T is a factor of S if and only if the trivially necessary periodic point
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condition (item (2) in the conjecture below) holds [20]. The case h(S) = h(T ) is
addressed by the following conjecture.

Conjecture 7.1. [21] Suppose A and B are irreducible matrices over Z with the
same spectral radius λ and the following hold:

(1) For all n ∈ N, if trAn > 0 then trBn > 0.
(2) The dimension module of B is a quotient of a closed submodule of the

dimension module of A.
Then the SFT σB is a quotient of the SFT σA.

The conditions (1) and (2) of the conjecture are necessary for the existence of a
factor map SA → SB [121]. If condition (2) is strengthened to the condition that
GB is a quotient (resp. closed submodule) of GA, then the desired factor map does
exist and it can be chosen to be right (resp. left) closing [5]. (The closing factor
maps are the factor maps which are topologically equivalent to resolving maps.) If
the conclusion is weakened to the statement that for all but finitely many n, (SB)n

is a factor of (SA)n, then again the conjecture is true (e.g. [45]), even without
condition (1). It is easy to check that Conjecture 7.1 is true in general if and only
if it is true with “irreducible” replaced by “primitive” (i.e., the SFTs are mixing).

The known general constructions of factor maps between equal entropy mixing
SFTs are constructions of maps which are left or right closing (i.e. maps topolog-
ically conjugate to left or right resolving maps), and we understand a good deal
about resolving and closing factor maps [2, 5, 6, 45]. However, an example of [121]
indicates that there are almost certainly pairs A,B which satisfy the assumptions
of Conjecture 7.1 but for which no factor map from σA to σB can be a composition
of closing maps; and an example of Kitchens [121] shows that not all factor maps
between irreducible SFTs are compositions of closing maps. While there are some
results which relate general factor maps between equal entropy irreducible SFTs
to resolving factor maps [121, 22, 25], we still lack the general constructions of
nonclosing maps needed to prove Conjecture 7.1.

At this time, so far as I know, nobody has worked out a reduction of the general
factors problem for equal entropy SFTs to the factors problem for irreducible SFTs.
However, it appears from [12] that this should be feasible.

8. The factors problem for sofic shifts

Problem 8.1. Suppose S and T are sofic shifts with h(S) ≥ h(T ). Give necessary
and sufficient conditions for the existence of a factor map from S onto T .

As with SFTs, the factors problem for sofic shifts begins with equal and unequal
entropy mixing and irreducible cases, after which there is the general case.

Suppose T1 and T2 are equal entropy irreducible sofic shifts, and suppose T2 is
almost finite type (AFT). (The AFT shifts are those subshifts which are the image
of an irreducible SFT by a factor map which is one-to-one on a nonempty open set.
The AFT shifts are a large, interesting and relatively tractable class of sofic shift
[127, 130].

Let p1 : S1 → T1 and p2 : S2 → T2 be the canonical right closing covers of S and
T by irreducible SFTs. Then from [37] one sees that there is a factor map from
T1 onto T2 if and only if there is a factor map from S1 onto S2 whose quotient
relation contains the quotient relation for p1. We do not know when there is such a
map S1 → S2. If T2 is not AFT, we have various sufficient conditions for existence
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of a factor map T1 → T2 but I do not know conjectural necessary and sufficient
conditions.

The case of Problem 8.1 where S and T are irreducible with h(S) > h(T ) is
far more complicated than the corresponding problem for SFTs, and is open. The
best results to date are due to Klaus Thomsen [184], who introduces a novel idea
of “irreducible component” for subshifts which clarifies the factors problem.

9. The Good Finitary Conjecture for Markov shifts

By a mixing Markov shift in this section we mean a pair (S, µ) where S is a mixing
SFT and µ is an S-invariant Markov measure. Two such shifts (S, µ) , (S′, µ′) are
measurably isomorphic if there is a shift commuting measurable bijection φ such
that φµ = µ′ and φS = S′φ µ-a.e. From a classification of mixing Markov shifts up
to measurable isomorphism, one easily obtains a classification of irreducible Markov
shifts up to measurable isomorphism.

Following Ornstein’s isomorphism theorem for Bernoulli shifts, Ornstein and
Friedman [78] showed that the mixing Markov shifts were classified up to mea-
surable isomorphism by entropy. There naturally followed explorations of various
stronger equivalence relations, in which additional conditions were imposed on the
measurable isomorphism φ. In particular, a finitary isomorphism is a measurable
isomorphism φ such that φ and φ−1 are continuous in the relative topology after
restriction to full-measure sets. (For subshifts this means that φ and its inverse are
defined on measure 1 sets by variable length block codes.) Keane and Smorodinsky
[100] showed that for finite state Markov shifts, entropy is a complete invariant of
finitary isomorphism.

A general finitary map is not as nasty as a general measurable map, but it may
still retain a certain infinite and oracular quality. This led Parry to introduce the
idea of finite expected coding time [156]. Given the finitary isomorphism φ between
subshifts, one can define a.e. a coding time function n(x) on its domain: n(x) is the
smallest nonnegative integer n such that for almost all y, if x[−n, n] = y[−n, n] then
(φx)0 = (φy)0. The integral of n is the expected coding time. Two Markov shifts
are isomorphic with finite expected coding time if they are finitarily isomorphic by a
map φ such that φ and its inverse each have finited expected coding time. Schmidt
introduced a related but distinct condition [175, 176]: a measurable isomorphism
of subshifts is hyperbolic structure preserving if it respects the stable and unstable
relations on sets of full measure. (That is, for all x, y in some set of measure 1 in
the domain of φ, there exists N ∈ Z such that xi = yi for all i > N if and only if
there exists N ′ ∈ Z such that (φx)i = (φy)i for all i > N ′; and the same holds with
“<” in place of “>”.)

For each of these relations, the same necessary conditions for isomorphism are
known. There are currently two approaches to this problem; the more developed
approach involves positive elements of ideals in polynomial rings [145, 72, 73], and
the other involves coding arguments on countable state Markov chains [26, 84].
Each (when it works) produces an isomorphism φ for which there is a word W (of
length |W | = n, say) such that for all x in a measure 1 subset of the domain of φ, if
x[i, i+ |U |+ 2n− 1] = WUW , then (φx)[i+n− 1, i+n− 1 + |U |] is determined by
the word WUW ; and likewise there is such a word for φ−1. Such codes are called
magic word isomorphisms, and these are the codes which we define in this survey
to be “good finitary isomorphisms”. The magic word isomorphisms in particular
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have exponentially fast coding time and are hyperbolic structure preserving. The
problem of classifying mixing Markov shifts up to good finitary isomorphism would
have a very satisfactory solution if the following “Good Finitary Conjecture” were
proved.

Conjecture 9.1. There is a magic word isomorphism between two mixing Markov
shifts if and only if the following conditions are satisfied.

(1) They have the same beta function.
(2) They have the same ratio group ∆.
(3) Their groups Γ/∆ (weights group modulo ratio group) have the same canon-

ical generator.

We recommend [136] for an excellent introduction to this topic and its literature,
and then further deveopments in later papers of Tuncel and collaborators (e.g.
[137]). Here we’ll define the invariants cited in the conjecture (“the Greeks”),
which were developed in various works by Krieger, Parry, Schmidt and Tuncel.

Suppose P is a stochastic matrix presenting a Markov shift. Let P (t) be the
matrix obtained by replacing each nonzero entry p of P with the function pt (t ∈
R). Let R be the ring of functions which are linear combinations of functions pt

(0 < p ∈ R). Set q(z) = det(zI − P (t)). Let b(z) be the irreducible element of
R[z] which divides q(z) (often q = b) such that b(1) = 0. Then the stochastic zeta
function of this Markov shift is 1/q(z) and Tuncel’s beta function is 1/b(z). The
stochastic zeta function in a familiar formalism encodes the number of periodic
points of period n and weight w, for all n and w; the beta function is analogous
here to entropy. (Again, see [136].)

If i0, i1, . . . , in index rows/columns of P such that P (i0, i1)P (i1, i2) · · ·P (in−1, in) =
b > 0, then the positive real number b is the weight of the path i0i1 · · · in of length
n. The path is a loop if i0 = in. The group Γ is the subgroup of the multiplicative
reals generated by the weights of loops. The group ∆ is the set of all positive real
numbers x such that x is the ratio of the weights of two paths of equal length and
equal initial and terminal vertex. It turns out that the quotient group Γ/∆ is cyclic
with a canonical generator.

Historically, good finitary isomorphisms between finite state Markov shifts were
constructed from almost topological conjugacies: one-to-one almost everywhere
extensions to a common finite state Markov shift. However, an example of Marcus
and Tuncel [136] shows that it is possible for there to be a good finitary isomorphism
between two mixing Markov shifts when the two shifts are not almost topologically
conjugate.

10. What can be a beta function?

Up to topological conjugacy, a mixing SFT is defined by a primitive matrix A
over Z+. Here the entropy of the SFT is the log of the spectral radius λA of A
and the zeta function is ζ(z) = (det(I −A))−1. We know what these can be. Lind
characterized these spectral radii: they are the Perron numbers, positive algebraic
integers strictly greater in modulus than any algebraic conjugate. Kim, Ormes
and Roush proved the Spectral Conjecture for Z, characterizing the possible zeta
functions.
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For a mixing SFT with a Markov measure (i.e. a mixing Markov shift), the
situation is quite different. The analogue of the zeta function is the stochastic zeta
function; the analogue of the entropy is the beta function (discussed in Section 9).

Problem 10.1. Characterize the functions which can be the stochastic zeta func-
tions of mixing Markov shifts.

Problem 10.2. Characterize the functions which can be beta functions of mixing
Markov shifts.

I am not aware of any conjecture addressing these problems.
These problems can be made more concrete. In section 9, from a primitive sto-

chastic matrix P a primitive matrix A over R was constructed to present a mixing
Markov shift. One can identify several variables xi with chosen free abelian gener-
ators for the subgroup of the multiplicative reals generated by the positive entries
of P , and then pass from A to a matrix whose entries are Laurent polynomials in
several variables with nonngative integral coefficients. The two problems above can
then be restated in terms of such polynomial matrices. See [136], for an introduc-
tion to these ideas; [157, 188], which address the issue of a suitable choice of basis;
and [187], which takes a several-complex-variables approach.

For a taste of the difficulties involved in such polynomial realization problems,
and their applications to coding problems for Markov shifts, consult [4, 88], and
[138].

11. Structure of expansive subdynamics

We first recall some background from [41]. Let α be a Z2 action by homeomor-
phisms on an infinite compact metric space X. A subset E of R2 is an expansive
set for the action if there exist M > 0 and ε > 0 (M and ε are allowed to depend on
E) such that for all distinct x, y in X, there exists n ∈ Z2 such that dist(x,E) < M
and dist(αn(x), αn(y)) > ε. Let E1(α) denote the set of n ∈ Rd such that the line
Rn is an expansive set for the action. The set E1(α) is the union of open cones in
R2, and there are nonzero elements of R2 in its complement. (In [41] this approach
is extended to higher rank actions and higher-dimensional subspaces; for simplicity,
we do not consider these here.)

For an example, suppose B,C are matrices in GL(n,Z), and for 1 ≤ i ≤ n
they have respectively eigenvalues βi, γi on a common eigenline Li, with these lines
spanning Rn. Let α be the Z2 action on Tn defined by letting (m,n) act by BmCn.
Then E1(α) is the complement of the lines in R2 through the origin with slopes
− log |βi|/ log |γi|, 1 ≤ i ≤ n.

An expansive component of directions is a connected component of the open set
E1(α); it is an open cone contained in (possibly equal to) some half-space. We
abuse language and say αn is in an expansive component if n is. For the n in a
given expansive component, quantitative dynamical properties of αn tend to vary
regularly as a function of n, and qualitative properties tend to hold for all or none
of these αn. Especially, the stable and unstable relations for αn are the same for all
n in a given component. (See [41, Sec. 5] for more of the viewpoint of expansiveness
as a regularity condition.)

So, when a Z2 action has some element acting expansively, we think of R2 split-
ting into pieces: there are open cones C (the expansive components) in which the
dynamics of αn varies regularly with n; the dynamics in different components can
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differ more significantly; and the dynamics change qualitatively at boundaries of
the components.

In the case that αn is a mixing SFT, we know a great deal about the dynamics of
the elements αm such that m is in the same expansive component C as n [41]. These
αm are mixing SFTs with a common measure of maximal entropy; the entropy is
a linear function of m; they are all SFTs with the same dimension group; the
shift equivalence classes are nicely parametrized; and there is still sharper matrix
information available from the LR textile systems of Nasu (see Appendix C).

However, we have very limited understanding of the possible structure of compo-
nents, compatibility of dynamics in different components and variation of dynamics
as a parameter moves from one component to another. On these matters we state
various problems in this and later sections.

Problem 11.1. What sets can equal E1(α) for a Z2 SFT α? Especially, what are
the possible E1(α) when there exists n such that αn is SFT?

We can be more specific.

Questions 11.2. Suppose α is a Z2 action for which there exists n such that αn

is SFT.
(1) Is it possible for α to have infinitely many expansive components?
(2) Is it possible for α to have an expansive component with a boundary lying

on a line of irrational slope?

With one exception, it is known [41] that any nonempty closed union of lines in
R2 occurs as the complement of E1(α) for some Z2 subshift α. The unknown case
is Question 11.3 below.

Question 11.3. [41] Suppose L is a line of irrational slope in R2. Does there exist
a Z2 action α on a compact metric space such that L is the complement of E1(α)?

The next question is “morally” related to Question 11.3.

Question 11.4. [41] Suppose L is a line of rational slope in R2. Does there exist
a Z2 action α on a compact metric space such that the following hold?:

• L is the complement of E1(α), and
• for all nonzero n in L ∩ Z2, αn is not the identity map on X.

The paper [132] offered a negative answer to Question 11.4, but M. Nasu has
pointed out (personal communication) that [132, Lemma 3.2] is not correct; in
particular, the line of slope 2/5 in the example of [132] is an additional nonexpansive
line. Therefore Question 11.4 is still open.

12. Can nonSFT expansive maps commute with irreducible SFTs?

Question 12.1. [150] Suppose S is an expansive automorphism of an irreducible
SFT. Must S be SFT?

For this type of question, we know much more if one or both of the conditions
becomes onesided. A positively expansive map commuting with a onesided SFT (or
a twosided SFT) must be a onesided SFT [125, 151]. An expansive automorphism
S of a onesided full shift on n symbols must be SFT [152]; and this SFT must be
shift equivalent to a full shift on k symbols [44], where k ([153], generalizing [44])
is possible here if and only if the following hold:
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• a prime p divides n iff it divides k, and
• if a prime p divides n, then p2 divides k.

There is one more conjectural ingredient for the onesided picture:

Conjecture 12.2. [44] An expansive automorphism of a onesided full shift is topo-
logically conjugate (not only shift equivalent) to a twosided full shift.

Now we turn back to the open Question 12.1, where we know the following.
(1) A simple 1996 example of Doris Fiebig shows an expansive automorphism

of a reducible SFT S need not be SFT [24]. (In the example, the SFT
consists of two fixed points and two connecting orbits.)

(2) A strictly sofic AFT (almost finite type) shift S cannot commute with a
mixing SFT T [24]. (The AFT sofic shifts have several characterizations
and seem to be the one big, natural class of relatively well behaved sofic
shifts [127, Sec. 13.1]).

(3) [154] If φ is an expansive automorphism of an irreducible SFT S, and φ or
φ−1 has memory zero or anticipation zero, then φ is SFT.

The result (3) of Nasu is a major advance: it is the first general result which
addresses Question 12.1 for automorphisms of an SFT which need not be in the
same expansive component as the SFT itself. The paper [154] extends and also
unifies the “textile systems” machinery which produces all the current affirmative
results related to Question 12.1, including the onesided results.

13. The Commuting Powers Conjecture for SFTs

We say that two continuous maps f, g can commute if there are maps F and G
topologically conjugate respectively to f and g such that FG = GF .

Conjecture 13.1. Suppose S and T are mixing SFTs. Then for all large i and j,
Si and T j can commute.

I stated this conjecture in a talk at the August 2005 Northwest Dynamics Confer-
ence in Victoria, after posing it as a question in a question session at the Summer
2004 Algebraic and Topological Dynamics Activity at the Max Planck Institute.
(The general problem “when can two mixing shifts of finite type commute” was
[41, Problem 9.9]. The very general problem of understanding the dynamics of
SiT j , when T is an automorphism of an SFT S, was posed by Nasu in [150, p.8].)

The conjecture would not be true if the assumption of passing to powers were
dropped, on account of obstructions involving low order periodic points; but there
is no such periodic point obstruction to the conjecture itself. This is shown in
Appendix A. When S and T are defined by matrices which in a suitable sense
commute, then Conjecture 13.1 is true. This is explained in Appendix B and
Appendix D.

It would be natural to guess that commuting SFTs must in some sense arise only
from commuting matrices. For onesided SFTs this is true:

• All commuting onesided SFTs can be presented by commuting matrices
over Z+ [150]
• There is a refined dimension group approach putting drastic constraints on

which onesided SFTs can commute ([30], following [15]).
• Commuting onesided SFTs have the same measure of maximal entropy [30].
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All of the above are not true in general for twosided SFTs. We know this on account
of a dramatic example of Nasu.

Example 13.2. [150] There are square matrices A,B over Z+ and an automor-
phism S of σA such that S is topologically conjugate to the mixing SFT σB and the
following hold.

• A =
(

2 1
1 1

)
• B has characteristic polynomial χB(x) = (x+ 1)2(x3 − 2x2 + x+ 1).

These two properties imply that the ranges of the maximal entropy measures of
σA and σB on clopen sets are different, and therefore

• S and σA do not have the same measure of maximal entropy.
The SFTs σA and σB are not algebraically related in any obvious way: their en-
tropies are logs of numbers generating unrelated number fields (quadratic vs. cubic),
and the ranks of their dimension groups are different (2 vs. 5). The SFTs σA, σB

cannot be related to commuting matrices in the manner of Appendix D.
Nasu has developed an extensive apparatus (“textile systems” [150]) for studying

the dynamics generated by a SFT (onesided or twosided) and a continuous map
commuting with it. Within this structure, he provides an algorithm which, given
an automorphism U of an irreducible SFT, will find a matrix B such that σB is
topologically conjugate to U , if U is SFT. Example 13.2 above came from applying
the algorithm to a natural example.

It is not uncommon in symbolic dynamics to encounter low order periodic point
obstructions which when satisfied allow a general result (this happens for example
in the context of factor maps [5], embeddings [122], and automorphisms [115, 116]).
This pattern and Nasu’s example are behind Conjecture 13.1. It might be that
mixing SFTs can commute whenever they can commute on periodic points.

14. Jointly invariant measures

We recall a famous problem of Furstenberg [80]. We say two positive integers p
and q are nonlacunary if they generate a nonlacunary semigroup under multiplica-
tion (i.e., there do not exist positive integers k,m, n such that p = km and q = kn).
Given n ∈ N, in Problem 14.1 below we let Tn denote the map S1 → S1 defined by
z 7→ zn.

Question 14.1 (Furstenberg [80]). Suppose p and q are nonlacunary positive in-
tegers. Can there exist a nonatomic Borel probability µ on S1, other than Haar
measure, which is jointly invariant for Tp and Tq?

Question 14.1 is not overtly a problem of symbolic dynamics but it is easily refor-
mulated as a problem of finding the nonatomic Borel probabilities jointly invariant
for the full shift on six symbols and a specific automorphism [172]; and it was in
this setting that Rudolph and Johnson [172, 94] showed any counterexample µ to
Conjecture 14.1 must have zero entropy with respect to both Tp and Tq. Since the
work of Rudolph and Johnson, the problems, results and methods around Question
14.1 have been generalized well beyond the symbolic dynamics setting (see [70, 129]
and their references); but the essential problem left open by Rudolph and Johnson,
the possible existence of nonatomic zero entropy measures jointly invariant for Tp

and Tq, is open still.
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Note that in the Example 13.2 of Nasu, we immediately see two jointly invariant
measures of nonzero entropy (namely, the maximal entropy measures of σA and
S). We suggest that it may be fruitful to investigate the possibilities for jointly
invariant measures of commuting SFTs.

For some special classes of cellular automata, there are measure rigidity results
asserting that the only jointly invariant positive entropy measure is the uniform
Bernoulli measure (see [93, 161, 173] and their references), and asymptotic ran-
domization results asserting that for large classes of measures the Cesaro limit
of iterates under the c.a. map exists and is the uniform Bernoulli measure. See
[74, 131, 160, 161, 162, 163], especially the survey [161], and their references for
results and open problems in this area.

A seminal example for the study of algebraic symbolic systems has been the
Ledrappier 3-dot example. This is the closed shift invariant subgroup X of {0, 1}Z2

consisting of points x such that for all n ∈ Z2,

x
(
n
)

+ x
(
n + (0, 1)

)
+ x

(
n + (1, 0)

)
= 0

(where of course {0, 1]} represents Z/2). Basic questions on invariant measures
remain open for this system, including the following.

Question 14.2. Is Haar measure the only invariant ergodic Borel probability on
X with full support?

Without the “full support” condition the answer to Question 14.2 is emphatically
“no” [68]. See [69, 179, 180] and their references for more on this problem. More
generally:

Problem 14.3. Determine the shift invariant Borel probabilities and subsystems
of X.

15. Zd SFTs

Irreducible SFTs are finite towers over mixing SFTs, and the nonwandering part
of an SFT is a disjoint union of irreducible SFTs. From this structure, many
problems about SFTs can be reduced to problems about nontrivial mixing SFTs,
all of which have very similar qualitative properties. Invariants can be computed.
The finer functorial problems can generally be formulated as attackable matrix
problems.

The situation is very different for Zd SFTs for d > 1. Various problems become
undecidable, exact computations are rare and the range of qualitative possibilities
expands dramatically (see e.g. [52, 165, 178, 128] and their references). In contrast
to the situation for Z SFTs, where we often have mature conjectures for refined
problems, in the case of Zd SFTs with d > 1 we are still discovering the landscape.

Recent results of Hochman and Meyerovitch [90, 91] have recast the dynamical
possibilities for Zd SFTs (d > 1) in a more computation-theoretic and constructive
framework. This is a strong statement, as the computation-theoretic viewpoint is by
no means new here [97, 178]; there have been striking undecidability results for Zd

SFTs and the closely related cellular automata; and the papers [90, 91] themselves
rely heavily on work of Shahar Mozes and Raphael Robinson [146, 169]. However,
it seems fair to say that the new constructive methods of [90, 91] have produced
structural results at a level unprecedented in this area. For example, for any d > 1,
the possible entropies of Zd SFTs are precisely the right recursively enumerable
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nonnegative real numbers [90]. Also, for d > 2 there are very strong results toward
the classification of d-dimensional cellular automata and the directional dynamics
of Zd SFTs [91]. The new constructive methods also allow hope for progress on
various other problems for which there were simply no available methods.

All the constructions in [90, 91] are constructions of SFTs with isometric factors,
and factors of such SFTs, and this underlines the potential significance of mixing
conditions. In particular, what can be said about the structure of Zd SFTs with
completely positive entropy? (In the abelian algebraic case, these are weakly alge-
braically equivalent to Bernoulli group shifts [46].) Also, at this time the striking
results in [91] on Zd SFT subdynamics for d ≥ 3 are not known for d = 2, and
the entropies of injective and surjective d-dimensional cellular automata are not
characterized, especially in the case d = 1.

Among the many open problems in this area, we mention the following question
of Benjy Weiss, and a closely related question of Klaus Schmidt.

Question 15.1 (Benjy Weiss, early 90’s). For d > 1, must a Zd sofic shift be a
factor of some Zd SFT of equal entropy?

Question 15.2 (Klaus Schmidt, late 90’s). For d > 1, if φ is a continuous factor
map from a Zd SFT X onto a Zd sofic shift Y , must there exist a sofic subshift W
of X such that h(W ) = h(Y ) and φ(W ) = Y ?

For d = 1, the answer to both questions is yes (see [127] for Question 15.1 and
[135] for Question 15.2). The answer to Question 15.2 would be “no” even for d = 1
if W were required to be SFT [135].

For d > 1, it was only recently proved that every Zd sofic shift is a factor of
an SFT of arbitrarily close entropy, and likewise that the answer to Question 15.2
would be “yes” if W were required only to be arbitrarily close in entropy to Y [63].

16. Stable limit sets of cellular automata

We consider in this section a one dimensional cellular automaton map f , that is,
a block code f from some some full shift X = XN = {0, 1, . . . , N − 1} into itself.
If fk(X) = fk+1X for some k > 0, then f has a stable limit set, and it is the sofic
shift fk(X).

Problem 16.1. (Maass) Characterize the stable limit sets of one-dimensional cel-
lular automata.

We will recapitulate the state of this problem, following [130]. An SFT Y is
a stable limit set for some c.a. map f : XN → XN if and only if it is mixing,
contained in XN , and contains a fixed point.

More generally, for a sofic Y in XN to be a stable limit set of a c.a. map, it
is necessary that Y be mixing and contain a fixed point which is “receptive” (an
easily checked technical condition). The converse holds for AFT sofic shifts but is
open in general. The problem reduces to the following coding question.

Problem 16.2. Let T be a mixing sofic shift with a receptive fixed point. When
does there exist a block code f from T to T , and an SFT T ′ containing T , such that
f maps T ′ into T?

The following problem seems to be the heart of the matter.

Problem 16.3. Let f be a surjective block code from a mixing sofic shift T to itself.
When does there exist an SFT T ′ containing T such that f maps T ′ into T?
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17. Algebraic Zd SFTs

One motivation for the very successful [177, 178] investigation of Zd actions of
algebraic origin was to obtain some large but understandable class of Zd actions.

By a Zd group shift, we will mean an expansive action α of Zd by continuous
automorphisms of a zero dimensional compact metrizable group X. By a Bernoulli
Zd group shift, we will mean the Zd shift on the product group GZd

, where G is
a finite group with discrete topology. A group subshift of a Bernoulli shift is the
restriction of the shift to a shift-invariant compact subgroup. Any group shift is
algebraically conjugate (i.e., topologically conjugate by a homeomorphism which is
also a group isomorphism) to a group subshift of a Bernoulli group shift.

Two group shifts are weakly algebraically equivalent [71] if each is a quotient
(factor) of the other by a continuous group homomorphism. A group shift has
completely positive entropy if as a measurable system with respect to Haar mea-
sure it has no nontrivial factor of zero entropy. Any abelian Zd group shift is
weakly algebraically equivalent to a unique (up to isomorphism of the alphabet
group) Zd Bernoulli group shift; any abelian Zd group shift factors algebraically
onto a Bernoulli group shift; and any (possibly nonabelian) Zd group shift factors
topologically onto a Bernoulli group shift [46].

There is a rich algebraic theory for the dynamics of actions of Zd by continuous
automorphisms of compact abelian groups [177]. The nonabelian case is much less
well understood. Here in the symbolic setting are two questions.

Question 17.1. Does every nonabelian group shift factor algebraically onto a
Bernoulli group shift?

Question 17.2. Is every nonabelian group shift weakly algebraically equivalent to
a Bernoulli group shift?

For d = 1, every Zd group shift of completely positive entropy is topologically
(not in general algebraically [177]) conjugate to a Bernoulli group shift [118]. Even
for abelian group shifts, this is not true for d > 1 [46, 120].

Problem 17.3. Classify group shifts (especially, abelian group shifts with com-
pletely positive entropy) up to topological conjugacy.

18. Finitary codes and Markov random fields

Suppose for i = 1, 2 that Si is a Zd subshift with shift-invariant Borel probability
µi. A factor map φ from (S1, µ1) to (S2, µ2) is a measure-preserving map commuting
with the Zd shift action. The factor map is finitary if there is a setN1 in S1 such that
φ is continuous (in the relative topology) on the complement of N1. (This means
that for every x in the complement of a null set, there is an M depending on x such
that the restriction of x to the finite configuration {v ∈ Zd : ||v|| ≤M} determines
(f(x))0.) If φ is an invertible finitary factor map, and its inverse is finitary, then
φ is a finitary isomorphism of the measure preserving systems (Si, µi), and these
systems are finitarily isomorphic.

By a Bernoulli shift, we will mean a Zd subshift with a measure whose coordinate
projections are i.i.d. onto a finite state space, that is, a measure which is product
measure on that finite state space. (Caveat: often, as in [13], a Zd action with
respect to some measure is called Bernoulli if it is measurably isomorphic to what
we are calling a Bernoulli shift; also, while considering subshifts, we are ignoring
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infinite entropy Bernoulli systems.) For d = 1, Keane and Smorodinsky [100]
showed that every mixing Markov shift (S, µ) is finitarily isomorphic to a Bernoulli
shift. For d > 1, the analogous situation is not nearly so homogeneous.

Given a Zd subshift X with alphabet A, and C a subset of Zd, the restriction
map x 7→ x|C maps X onto a subset XC of AC . Given a measure µ on X, and
B,C in Zd, let µ(B|C) denote the conditional distribution of µ on XB given the
distribution on XC . If B is a finite subset of Zd, let the boundary of B be the set

∂B := {v ∈ Zd \B : ∃w ∈ B, ||w − v||1 = 1}.
A Markov random field is a measure µ on a Zd shift S with the following property:
for every finite subset B of Zd (with complement B′) and µ-almost all x in S, the
conditional distributions µ(B|B′) and µ(B|∂B) are equal. (We are only considering
Markov random fields with finite state space, that is, the stochastic process of
coordinate projections has finite range.) The random field is stationary if the
measure is invariant under the Zd shift. Unless stated otherwise, by Markov random
field we will mean stationary Markov random field.

The Zd generalization of a Markov measure is a Markov random field. It was
shown by del Junco [95] that for any Markov random field µ on a subshift S,
there are finitary factor maps from (S, µ) onto all Bernoulli shifts of strictly lower
entropy. On the other hand, Hoffman showed that a subshift with a stationary
Markov random field can be K (equivalently, have no nontrivial measurable factor
of zero entropy) and still not be measurably isomorphic to a Bernoulli shift [92].

Moreover, van den Berg and Steif [13] gave examples of shifts with Markov
random fields which are measurably isomorphic to Bernoulli shifts (these fields can
even be measures of maximal entropy), but which are not the image of a Bernoulli
shift under any finitary factor map, as follows. Suppose there are distinct ergodic
Markov random fields µ, ν on a Zd full shift S, assigning positive measure to every
open set, such that µ(B|∂B) = ν(B|∂B) for every finite subset B of Zd. In this case
(and for other interesting examples with the full-support condition relaxed), van
den Berg and Steif showed there cannot exist a finitary factor map from a Bernoulli
shift onto (S, µ).

On the other hand, Steif and van den Berg established a large class of Markov
random fields which are finitary factors of Bernoulli shifts; and they showed that
both scenarios occur for the Ising model, and that the two scenarios correspond to
whether one is above or below the critical paramter. Thus the idea of a finitary
isomorphism, which arose for Z actions as an abstractly natural equivalence, has for
Zd shifts an unexpected and intriguing relation to phase transitions. We mention
two of the various problems in this direction.

Problem 18.1. [13, Question 3] If a translation invariant Markov random field µ
on a shift S is the unique Markov random field (among both translation invariant
and non-translation invariant fields) with its conditional probabilities, must (S, µ)
be measurably isomorphic to a Bernoulli shift?

The measure µ in Problem 18.1 must be K [13].

Question 18.2 (Steif). Suppose a Zd SFT has a unique measure of maximal en-
tropy which is Bernoulli. Must there exist an i.i.d. process mapping finitarily onto
it?

There are more questions in [13].
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19. Decidability problems

There are many open decidability problems, including the following.

Problems 19.1. Determine for any of the following whether there exists a decision
procedure.

(1) Given square matrices A and B over Z+, decide whether the associated
SFTs σA and σB are topologically conjugate. (Equivalently, decide whether
A and B are strong shift equivalent over Z+.)

(2) Decide whether two given sofic shifts are topologically conjugate.
(3) Decide whether two given onesided sofic shifts are conjugate. (See Section

21.)
(4) If U is an expansive automorphism of an SFT S (e.g. U = S), compute (for

the Z2 action generated by U and S) the expansive component C containing
of S.

(In Nasu’s theory of textile systems [150], C is the interior of the ELR
cone for U , and Nasu provides an algorithm which enumerates a sequence
of cones whose union will be this interior. However, we do not know a
procedure which produces convergent upper bounds to this C.)

(5) [97, Open Problem 7] Given a surjective block code φ on a full shift, decide
if φ is positively expansive.

(6) Given an automorphism φ of a mixing SFT, decide if φ is expansive.
(7) Given an expansive automorphism φ of a mixing SFT, decide if φ is SFT.

(Here, Nasu provides an algorithm which, if φ is SFT, will eventually
affirm φ is SFT and will return a matrix defining an edge SFT topologically
conjugate to φ [150]. However, if φ is expansive and not SFT, then this
algorithm will never halt.)

Even for 1-dimensional cellular automata (endomorphisms of full shifts), there
cannot exist a general procedure for estimating the entropy of a cellular automaton;
as far as I know, though, it is unknown if such a procedure can exist for invertible
one-dimensional cellular automata. For any (!) nontrivial property of the limit set
(eventual image) of a cellular automaton, there cannot exist a general procedure
which given a cellular automaton will decide if its limit set has the property [96].
For more on such results and problems for cellular automata, see [97, 98].

What decision procedures do we know? We can decide using periodic points
whether a block code from an irreducible SFT is surjective or if it is injective. We
can decide whether a subshift factor of an SFT is SFT. From work of Kim and
Roush, partly in collaboration with Bratteli and Jorgenson, we can decide more or
less everything related to shift equivalence of integral marices. For example, we can
decide whether given matrices are shift equivalent over Z+ [102], and whether two
stationary dimension groups are isomorphic [50]. For twosided sofic shifts, there is
a theory of shift equivalence and strong shift equivalence [38, 87, 147] analogous to
the SFT theory: two sofic shifts are shift equivalent iff they have all large powers
conjugate, and they are strong shift equivalent iff they are conjugate. Kim and
Roush have also shown how to decide whether two sofic shifts are shift equivalent
[104].
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20. Onesided SFTs: the embedding problem

Given a shift S, let On(S) denote the set of periodic orbits of cardinality n in
the shift S.

Let T be a mixing SFT. Krieger’s Embedding Theorem [122] states that a given
subshift S is isomorphic to a proper subshift of T if and only if the following
conditions hold:

(1) for all n, |On(S)| ≤ |On(T )|, and
(2) h(S) < h(T ).

Krieger’s Embedding Theorem is tremendously useful for many constructions
involving SFTs, and even for the construction of matrices with specified spectra
[33]. We have no analogous result for onesided shifts.

Problem 20.1. Suppose T is a mixing onesided SFT and suppose S is a subshift
such that h(S) < h(T ). Give good necessary and sufficient conditions for S to be
isomorphic to a subshift of T .

Next is the first step toward solving Problem 20.1.

Question 20.2. Suppose S is a onesided subshift, T is the full onesided shift on
N symbols, h(S) < h(T ) = logN , and no point of S has more than N preimages.
Must T be isomorphic to a subshift of S?

A solution to Problem 20.1 cannot have the simplicity of Krieger’s Theorem.
For example, if φ is a block code embedding S into T and x is in S, then φ(x)
cannot have more preimages in T than x has in S; and more generally, the whole
infinite preimage tree of x embeds into the preimage tree of φ(x). In particular,
the embedding of periodic points must be compatible with an embedding of their
preimage trees. Question 20.2 avoids these complications.

We remark, there is no real loss of generality in restricting these problems to
the case that S is SFT. This is because any S is the intersection of a decreasing
sequence of SFTs Sn, and S embeds into a given SFT T if and only Sn embeds into
T for all large n.

21. Onesided sofic shifts: the classification problem

Problem 21.1. Classify onesided sofic shifts.

We will see this problem has a very finite presentation – but, we really do not
know whether there exists a decision procedure for the classification.

Let us consider the context for Problem 21.1. First, we recall Williams’ classifi-
cation for onesided SFTs [192, 32]. Let A be an n×n matrix over Z+. If columns i
and j are equal, then define an (n− 1)× (n− 1) matrix A′ as follows: erase column
i to get a matrix A′′; replace rows i and j of A′′ with a single row which is the sum
of its rows i and j. For example, using i = 1 and j = 2 we compute

A =

1 1 1
0 0 1
1 1 3

→ A′′ =

1 1
0 1
1 3

→ A′ =
(

1 2
1 3

)
.

Here A′ is a one-step amalgamation of A. If A′ has two equal columns, compute
a smaller matrix which is a one-step amalgamation of A′. Continue until arriving
at a matrix which has all columns distinct. This matrix is the total amalgamation
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Atot of A. Up to conjugation by a permutation matrix, all choices of one-step
amalgamations will produce the same Atot. Williams showed that for matrices A
and B without zero rows, the associated onesided SFTs are topologically conjugate
if and only if there is a permutation matrix P such that Atot = PBtotP

−1 [192, 32].
That is about as simple and effective as a classification can be.

Next, consider two irreducible onesided SFTs supporting Markov measures.
When is there a measurable isomorphism of these measurable systems? Perhaps
surprisingly, this turns out to be a question of symbolic dynamics. Instead of matri-
ces over Z+ one considers matrices P,Q over a suitable larger ring. It is not known
if there is an analogue of the total amalgamation, but it is known that P,Q define
measurably isomorphic Markov shifts if and only if there is a matrix R of the same
type, and not larger than P or Q, which defines a Markov shift which is a resolving
factor of the other two; this is very manageable and there is a decision procedure
which given P and Q will produce R or state R does not exist. This theorem of
Ashley, Marcus and Tuncel [8] is a satisfying application of symbolic dynamics to
ergodic theory, and the ultimate classification is finite and effective.

Now for the sofic problem we focus on the main case, the irreducible onesided
sofic shifts (i.e. the factors of irreducible onesided SFTs). For such a shift T ,
using the usual irreducible predecessors cover construction [127], one can construct
an irreducible SFT S and a left resolving one-block factor map p : S → T given
by a labeled directed graph (a symbol of the shift S is an edge of the graph,
and the one-block code sends that symbol to its label). Such a labeled graph
has a “labeled” adjacency matrix M : e.g., if there are three edges from vertex
i to vertex j respectively labeled a, a, b, then M(i, j) = 2a + b. Such a matrix
M is called irreducible if the underlying adjacency matrix over Z+ is irreducible.
The construction for p produces an irreducible defining matrix M with all columns
distinct; and every irreducible matrix M with columns distinct defines such a cover.
Such a cover is the canonical left resolving irreducible cover of its sofic shift image.

The cover is canonical in the following sense. Suppose p : S → T and p′ : S′ → T ′

are two such covers, and ψ′ : T → T ′ is a topological conjugacy. Then there exists
a unique topological conjugacy ψ̃ : S → S′ such that ψp = p′ψ̃. Thus T and T ′

are topologically conjugate if and only if there exists some topological conjugacy
φ : S → S′ which takes the quotient relation of p to the quotient relation of p′ (i.e.,
p(x) = p(y) if and only if p′(φx) = p′(φy)) [79]. Because we can decide whether S
and S′ are conjugate, it remains to understand the case where S′ = S.

Problem 21.2. Give a procedure which decides, given canonical left resolving ir-
reducible covers p, p′ from a onesided irreducible SFT S, whether there is an auto-
morphism of S which takes the quotient relation for p to the quotient relation for
p′.

If the onesided SFT S has as a total amalgamation matrix a matrix A such that
A is a zero-one adjacency matrix of a directed graph with no nontrivial graph au-
tomorphism, then the only automorphism of S is the identity [32]. In this case, one
can simply present two covers from S by labelings of a suitably high block presenta-
tion. If the labelings are not equal, then the onesided sofic shifts are not conjugate.
In some other cases (e.g. A = [2], or A any zero-one matrix), the automorphism
group of S will be finite and there is again a straightforward procedure for deciding
conjugacy of sofic shifts whose canonical covers have domain S. These results are
some evidence that Problem 21.2 might be a correct approach to Problem 21.1.
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Fujiwara [79] gave an interesting and appropriate algebraic reformulation of this
problem, but it has not solved Problem 21.1. By analogy with the two classifications
discussed earlier, one naturally hopes for something like a classifying amalgama-
tion. Already Fujiwara gave an example showing in that algebraic framework a total
amalgamation does not generally exist; and Michael Schraudner (personal commu-
nication) has shown me an example of two 4× 4 labeled matrices which define the
canonical left resolving covers of topologically conjugate onesided sofic shifts, but
which cannot both be conjugated by one-block codes to any cover defined by an
n× n labeled matrix with n ≤ 4.

In Appendix F, we construct a large class of examples which give further restric-
tions on possibilities of this type.

22. The Virtual FOG Conjecture for automorphisms of a mixing SFT

Let A be a primitive matrix over Z, so S = σA is a mixing SFT. The auto-
morphism group Aut(S) of a homeomorphism S is the group of homeomorphisms
which commute with S [43]. When S is a nontrivial mixing SFT, this group is a
countable residually finite group, containing copies of all finite groups and many
infinite groups, but not of any group with unsolvable word problem. By a theorem
of Ryan, the center of the group is the group of powers of S. It would be interesting
to have some understanding of this naturally occuring class of complicated groups,
but they are mysterious. Apart from some application of Ryan’s theorem, we know
no way of distinguish the various Aut(S) as groups. For example,

Problem 22.1. Are Aut(σ2) and Aut(σ3) isomorphic groups?

We denote the kernel of the dimension representation ρ as Aut0(S), the group
of inert automorphisms of S. The subgroup Aut0(S) is combinatorially complex,
and seems to have a qualitative personality independent of S. For example, the
rich action of this subgroup on finite subsystems (and even on proper subshifts) of
S is now well understood [115, 116, 39], and apart from some differences involving
low order periodic points the possible actions are essentially the same. In contrast
to the richness and seeming homogeneity of Aut0(S), the range of ρ is typically a
finitely generated abelian group which reflects the algebra of A.

The mystery of the algebraic structure of Aut(S) lies mainly in Aut0(S). For
example, we do not know its commutator or its finite index subgroups. (We also
do not know, for mixing SFTs S and T , whether a group isomorphism Aut(S) →
Aut(T ) must send Aut0(S) to Aut0(T ).)

Let F0(S) denote the subgroup of Aut0(S) generated by its elements of finite
order and let Q0(S) denote the quotient group Aut0(S)/F0(S). For years, the
“FOG (finite order generation) Conjecture” asserted that Q0(S) is trivial. We now
have complete descriptions of the actions of F0(S) [29] and Aut0(S) [115, 116] on
finite subsystems of S, and we know that in some cases the quotient group Q0(S)
is nontrivial.

Conjecture 22.2 (Virtual FOG Conjecture). If S is a mixing SFT S, then the
group Aut0(S)/F0(S) is finite.



24 MIKE BOYLE

23. Topological orbit equivalence

Let α, β denote actions of groups G,H by homeomorphisms on compact metric
spaces X,X ′. The actions are topologically orbit equivalent if there exists a homeo-
morphism h : X → X ′ such that for every α orbit O, the set h(O) is a β orbit. An
action α is minimal if every α-orbit is dense.

Problem 23.1. Classify minimal actions of Zd on the Cantor set up to topological
orbit equivalence.

This problem is solved (spectacularly) for d = 1 [81]; to see the large and diverse
set of papers which followed, examine the citations to [81] in MathSciNet.

Question 23.2. For d > 1, is a minimal Zd action on the Cantor set topologically
orbit equivalent to a Z action?

Because the Z classification is known, an answer “yes” to Question 23.2 would
solve Problem 23.1. The preprint [82] gives an answer “yes” to Question 23.2 in
the case d = 2. Question 23.2 is a special case of the following question motivated
by analogy with Dye’s Theorem in ergodic theory.

Question 23.3. Is a minimal action on the Cantor set by a countable amenable
group topologically orbit equivalent to a Z action?

The minimal Z actions on a Cantor set X are classified by associated unital
ordered groups. The group is C(X,Z) modulo Infα(X,Z), its subgroup of infinites-
imals (functions with zero integral for every α-invariant Borel probability); an ele-
ment [f ] of the group is in the positive set if [f ] = [g] for some function g ≥ 0; and
the distinguished order unit is [1], the class of the constant function 1. For the mini-
mal actions on the Cantor set, the ordered groups appearing in this way are precisely
the simple dimension groups for which the subgroup of infinitesimals is trivial and
which are not Z. (We refer to [81] for the ordered group definitions for this class.)
For nonminimal homeomorphisms of zero dimensional compact metrizable spaces,
these unital ordered groups are still topological orbit equivalence invariants for any
homeomorphism of the Cantor set, although the ordered groups are typically no
longer dimension groups; and they have been applied in [35, 117] to nonminimal
systems. For example, the flow equivalence of irreducible shifts of finite type of
positive entropy is equivalent to isomorphism of their ordered cohomology groups
[35] (isomorphism respecting the distinguished units is a finer relation). The case
in which the orbit equivalence is defined by a bounded coycle is much more rigid
(see [48], and for nonzero dimension [76]).

Among the many open problems, we mention the following.

Problems 23.4. (1) Classify irreducible SFTs up to topological orbit equiva-
lence.

(2) Characterize the unital ordered groups which occur as the ordered coho-
mology for homeomorphisms of subshifts/irreducible SFTs/compact zero di-
mensional spaces.

(3) Classify the unital ordered cohomology groups of irreducible SFTs and sofic
systems.

(4) When X is zero dimensional, the cohomology group C(X)/(I − T )X car-
ries an alternate natural order, the winding order (see [35]). When is the
winding order the same as the standard order?
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(5) If an irreducible SFT is topologically orbit equivalent to a subshift S, must
S be SFT?

On these items, see [35, 117] and their references. Kim, Roush and Williams [117]
among other contributions introduced ordered homology groups and a refinement
of ordered cohomology which classifies irreducible SFTs up to homeomorphisms
which send finite orbits to finite orbits (or equivalently, they show, orbit closures
to orbit closures).

It is possible for mixing SFTs to be topologically orbit equivalent to nonexpansive
maps; it is possible for sofic shifts to be topological orbit equivalent to nonsofic
shifts; any homeomorphism h defining a topological orbit equivalence of irreducible
SFTs must send Markov measures to Markov measures, but h may disrespect past
and future on a dense Gδ set.

For irreducible SFTs S and T to be topologically orbit equivalent, the following
are the known necessary conditions [35].

(1) The measures of maximal entropy of S and T have the same range on closed
open sets.

(2) S and T have the same zeta function.
(3) S and T are flow equivalent.

On the other side, it is not known whether topological orbit equivalence of irre-
ducible SFTs S and T implies that S is topologically conjugate to T or T−1.

24. Symbolic extension entropy and entropy structure

Suppose T is a homeomorphism of a compact metric spaceX, and letMT denote
the compact metrizable space of T -invariant Borel probabilities. If S : Y → Y is a
subshift on a finite alphabet and ϕ : Y → X is a continuous surjection such that
ϕS = Tϕ, then we we say that ϕ is a symbolic extension of (X,T ). The extension
entropy function of ϕ is the function hϕ

ext onM(T ) defined by the rule

hϕ
ext : µ 7→ max{hν(S) : ν ∈M(S), ϕν = µ} .

The symbolic extension entropy function hT
sex is the infimum of the extension en-

tropy functions hϕ
ext, taken over all symbolic extensions ϕ [27]. (If there is no

symbolic extension, then we set hT
sex ≡ ∞. Also, we use “sex entropy” as an abbre-

viation for “symbolic extension entropy”.) The function hT
sex is a very fine reflection

of how and where complexity emerges in (X,T ) along refining scales, and underpins
the Downarowicz theory of entropy structure [64]. The entropy structure of T is
an equivalence class of certain sequences of real valued functions on theM(T ); see
[64] for the definition and motivation. Suffice it to say that entropy structure is
a master invariant for entropy theory, which determines in particular the entropy
function onM(T ) (µ 7→ hµ(T )) and the symbolic extension entropy function hT

sex.
A related invariant is hsex(T ), the topological sex entropy of T . This is the infi-

mum of the topological entropies of (Y, S), taken again over all symbolic extensions
ϕ : (Y, S) → (X,T ). If T is C∞, then hsex(T ) = htop(T ) [31, Theorem 7.8]. If
T is only C1, then hsex(T ) can be infinite (i.e., there is no symbolic extension)
[65]. For 1 < r < ∞, it is not known whether there exists a Cr system (X,T )
with hsex(T ) = ∞. In [65], it is shown that within certain families of Cr systems
(1 < r < ∞), hsex(T ) > htop(T ) is a generic property. Concrete Cr examples and
functorial properties of hsex are examined in [28].
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Problem 24.1. [65] Is it possible for a Cr diffeomorphism of a compact Riemann-
ian manifold to have infinite symbolic extension entropy?

Problem 24.2. [89, Question 6.7] Given 1 ≤ r ≤ ∞, which entropy structures can
occur for Cr diffeomorphism of a compact Riemannian manifold?

Problem 24.2 is perhaps a program for the decades rather than a single prob-
lem. However, already Downarowicz and Serafin [66] have explained exactly which
sequences of functions can occur as an entropy structure for a homeomorphism of
a compact metrizable space, and showed all of them can be realized on zero di-
mensional spaces. For other specific instances of Problem 24.2, see [89, Section
6].

25. Cellular automata and periodic points

Given A a set of n elements and d a positive integer, let X = AZd

. The natural
shift action of Zd defines the full Zd shift on n symbols. A d-dimensional cellular
automaton is a map f from some such X to itself, defined by a block code. A point
x is periodic for f (“temporally periodic”) if there exists k > 0 such that fk(x) = x.
A point is periodic for the shift (“spatially periodic”) if its orbit under the shift is
finite. A point is jointly periodic if it is periodic for both f and the shift.

Question 25.1. [17, 36, 97] Must a d-dimensional surjective cellular automaton
map have dense periodic points? dense jointly periodic points?

(Joe Auslander followed this question with a related one – must the minimal
subsystems of a surjective cellular automaton map be dense?)

Question 25.1 has been studied for d = 1 dimensional c.a., but so far as I know
it is also open for d > 1. In the case d = 1, the answer is “yes” if f is an algebraic,
closing or equicontinuous map [36, 17]. There is also some experimental evidence
[40] in the case d = 1, and in this case the question is a conjecture:

Conjecture 25.2. [40] For every surjective 1-dimensional cellular automaton, the
jointly periodic points are dense.

One would like some quantitative understanding about the frequency of the
jointly periodic points within the spatially periodic points. We will mention three
problems (two questions and a conjecture) which indicate how badly we lack tech-
niques for this. Let SN denote the one-dimensional full shift on N symbols. Given a
one-dimensional cellular automaton f and k ∈ N, for the moment let P be the num-
ber of fixed points of (SN )k which are also periodic for f , and let νk(f, SN ) = P 1/k.
Set

ν(f, SN ) = lim sup
k

νk(f, SN ) .

Question 25.3. [40] Is it true for every surjective one dimensional cellular au-
tomaton f on N symbols that ν(f, SN ) > 1?

Question 25.4. [40] Is it true for every surjective one dimensional cellular au-
tomaton f on N symbols that ν(f, SN ) ≥

√
N?

Conjecture 25.5. [40] There exists N > 1 and a surjective one-dimensional cel-
lular automaton f such that ν(f, SN ) < N .
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It seems perfectly clear from the experimental evidence [40] that there are many
c.a. satisfying the inequality of Conjecture 25.5.

Periodic points of d-dimensional cellular automata f become less constrained for
d > 1. We copy below an open problem of Kari in this area. There, P is the set of
spatially periodic points, and fP is the map P → P given by restriction of f . In the
case that there is a given “quiescent state” q (i.e. the point x such that x(n) = q
for all n ∈ Zd is a fixed point of f), F is the set of points x such that x(n) = q for
all but finitely many n in Zd, and fF : F → F is again given by restriction.

Questions 25.6. [97, Open Problem 2] For a d-dimensional cellular automaton f ,
with d ≥ 2,

(1) does injectivity of fP imply surjectivity of fF ?
(2) does surjectivity of fF imply surjectivity of fP ?
(3) does surjectivity of f imply surjectivity of fP ?

For d = 1 the answer to all of these questions is “yes”.

26. Cellular automata on big groups

Let G be a discrete countable group. One can consider a finite set A and the
product space AG and the shift action by G, where for x ∈ AG, the point σgx is
defined by (σgx)(h) = x(hg). The full shifts already described for G = Zd are a
special case of this construction. A group G is surjunctive if for all A a continuous
shift commuting map AG → AG must be either surjective or noninjective.

Problem 26.1 (Gromov [85]). Which groups are surjunctive?

Gromov introduced sofic groups [85], a class which generalizes amenable and
residually finite groups. Weiss proved that the sofic groups are surjunctive [191].

There are many papers in this area, including [59, 60, 75] and their references.

27. Entropy conjugacy and countable state Markov chains

Let S, T be Borel isomorphisms of standard Borel spaces. Define the entropy
h(S) of S as the supremum, over the S-invariant Borel probabilities µ, of the
measure theoretic entropies hµ(S). Let Merg(a, S) denote the S-invariant ergodic
Borel probabilities µ such that hµ(S) ≥ a. Following Buzzi [53, 26], say that S and
T are entropy conjugate if there is a number a, with 0 ≤ a < h(S) = h(T ), and a
Borel isomorphism φ from the domain of S to the domain of T , such that φ induces
a bijection Merg(a, S) → Merg(a, T ) which for each µ ∈ Merg(a, S) restricts to a
measurable conjugacy of the measurable systems (S, µ) and (T, φµ).

Question 27.1. Suppose S and T are positive recurrent, mixing countable state
Markov shifts of equal entropy. Must S and T be entropy conjugate?

The answer to Question 27.1 is “yes” if the two shifts are strongly positive
recurrent [26], and by previous work of Buzzi this has applications to certain classes
of smooth or piecewise smooth systems [26]. It would be interesting to have a better
idea of how general this kind of phenomenon is.
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28. Beta shifts: Salem numbers and intrinsic ergodicity

For β > 1, the β transformation on [0, 1) is the piecewise linear mapping Tβ

which sends x the fractional part of βx. Their study goes back now some 50 years.
Let Per(β) denote the periodic points of Tβ .

Klaus Schmidt [174, 19] showed that when β is a Pisot number, Per(β) = Q ∩
[0, 1); and if Per(β) = Q ∩ [0, 1), then β is either a Pisot or a Salem number.

Conjecture 28.1 (Schmidt, 1980). Per(β) = Q ∩ [0, 1) if β is a Salem number.

This conjecture is just naturally interesting, but the importance of Salem num-
bers for Lehmer’s Conjecture adds extra spice; something difficult about Salem
numbers is potentially significant.

The β transformation has a natural cover by a subshift known as the β shift; the
family of β shifts is a rich source of examples. The following problem for β shifts is
much newer. Recall a system is intrinsically ergodic if it has a unique measure of
maximal entropy.

Problem 28.2. [185] [Klaus Thomsen] Must a subshift factor of a β shift be in-
trinsically ergodic?

The β shifts themselves are intrinsically ergodic and mixing.

29. Adler’s Renewal Question

A subshift is a renewal shift if there is a finite set of words such that domain of
the subshift is the set of all doubly infinite concatenations of such words.

Question 29.1 (Adler, 1980’s). Is every irreducible sofic shift topologically conju-
gate to a renewal shift?

Goldberger, Lind and Smorodinsky [83] shows that all entropies of sofic shifts
were entropies of renewal shifts. Adler’s intuition was that the question might be
related to the conjugacy problem for SFTs (which is not known to be decidable).

30. The Road Coloring Problem

Problem 30.1 (The Road Coloring Problem). Let G be an irreducible directed
graph such that every vertex has the same number n of outgoing edges. Must there
exist a coloring of the edges of G with n colors satisfying the following?:

(1) at each vertex, the n outgoing edges have distinct colors, and
(2) there exists k ∈ N and a finite string of colors c = c1 . . . ck such that all

paths of length k in G with the coloring c end at the same vertex.

The name for the problem (which we will refer to simply as the Road Problem)
comes from thinking of the vertices of G as intersections of colored roads, and the
string c as a map. If the road problem has a solution, then you can follow the map
home regardless of where you start. The Road Problem was proposed as a target
lemma for proving a theorem of symbolic dynamics; Adler, Goodwyn and Weiss
found another method for that theorem [1].

The significance of the Road Problem for dynamics itself is perhaps no longer so
clear (although, a very natural problem for the classification of onesided Markov
chains is known to be strictly more difficult than the Road Problem [8]). But
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as a simply stated, longstanding problem with roots in dynamics, its inclusion is
irresistible.

See [51, 54] and their references for progress on and generalizations of the Road
Problem. ADDENDUM: The Road Coloring Problem has been solved by A. Traht-
man [186].

31. Parry’s Finiteness Question for skew products

This is a problem posed by Bill Parry some time in the 90’s, to which he devoted
a good deal of effort in years following 2001.

Consider a finite abelian group G; an irreducible SFT σA with domain XA; and
a continuous function f from XA into G. The weight of G on a finite orbit of σA is
the sum of f(x) over x in the orbit. After passage to a higher block presentation
system of the SFT, the function f can be presented by a G-labeled directed graph;
this labeled graph has an adjacency matrix B with entries in Z+G, the positive
cone of the integral group ring of G; the sequence (trace(Bn))n∈N encodes for all
n in N and g ∈ G the number of σA orbits of cardinality n with weight g and this
sequence in standard fashion is itself encoded as a zeta function

ζf (z) =
∞∑

n=1

trace(Bn)
n

zn = ζf (z) = 1/det(I − zB) .

A function f as above defines a skew product; its domain is XA,f = XA×G, and the
homeomorphism XA,f → XA,f is given by (x, g) 7→ (σAx, g+f(x)). A skew product
has a natural G action by translation on the G coordinate. Two skew products into
G are isomorphic if they are topologically conjugate by a homeomorphism which
intertwines the G actions.

Question 31.1 (Bill Parry, the 90’s). Can there exist an irreducible SFT σA and an
infinite family of pairwise nonisomorphic skew products constructed from skewing
functions f as above, where all the zeta functions ζf are the same?

Parry by example showed that finitely many nonisomorphic skew products over
an irreducible SFT could share the same zeta function ζf , but hoped the answer
to Question 31.1 would be “no”. He also showed the isomorphism of the skew
products could be posed as a question of strong shift equivalence over Z+G of
defining matrices of the form B above; for this see [23, 47]. For related work (in
which the skewing function f is Hölder into the real numbers), see [164].

32. Classification of sofic shifts

A sofic shift is a subshift which is a continuous quotient of a shift of finite type.
The sofic shifts are in some ways the most natural finitely defined class of subshifts.
For example, a subshift is sofic if and only if its language of allowed words is a
regular language; and a subshift quotient of a sofic shift is again sofic (in contrast
to the SFT case).

Problem 32.1. Classify sofic shifts up to topological conjugacy.

It is impossible to solve Problem 32.1 without first classifying SFTs – that prob-
lem comes first. Still, looking ahead, we’ll sketch the state of the art for Problem
32.1.
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Given a sofic shift T , the futures cover of S (also called the future cover or
Krieger cover [127, 119]) is a one-block right-resolving block code πfut : S → T
from an (edge) SFT S onto T , which can be defined by a labeling of a directed
graph as follows. The vertices of the graph are the (finitely many) sets

[x] = {z[1,∞) : x(−∞, 0]z[1,∞) ∈ S}
defined from points x of T . (Heuristically, [x] represents the “possible futures” seen
at time zero from the history of a point x.) There is an edge in the graph from
[x] to [y] labeled a if and only if there exists some sequence az1z2z3 . . . in [x] such
that z1z2z3 . . . is in [y]. A version of this cover was first introduced, for irreducible
sofic shifts, by R. Fischer; the construction is closely related to the classical “subset
construction” of a minimal deterministic finite automaton in computer science (see
[127]).

A key advance in the theory of sofic shifts was Krieger’s insight [123] that the
map πfut is canonical, in the following sense: if φ : T → T ′ is a topological conjugacy
of two sofic shifts, with future covers πfut : S → T and π′fut : S′ → T ′, then there is
a unique topological conjugacy φ̃ such that π′futφ̃ = πfutφ. So, the classification of
the sofic shifts up to topological conjugacy amounts to the classification of a certain
class of maps from SFTs up to topological conjugacy (we say two maps π, π′ are
topologically conjugate if there exist topological conjugacies φ, φ̃ of their domain
and range such that π′φ̃ = φπ). This allows a rich collection of fine invariants [38],
but further it leads to an algebraic classification approach, as follows.

The future covers, presented by labeled graphs, may equivalently be presented by

certain matrices (“λ-matrices”). For example, a matrix A =
(

a b
b+ c 0

)
describes

a certain edge labeling of the directed graph with adjacency matrix B =
(

1 1
2 0

)
,

and this describes a one-block code from the edge SFT σB onto a sofic shift whose
alphabet is {a, b, c}. Formally, this λ-matrix has entries in the integral semigroup
ring of the free group on symbols a, b, c.

Nasu [147] worked out an appropriate notion of strong shift equivalence for λ-
matrices, as a part of a theory of bipartite codes for general subshifts, generalizing
Williams’ strong shift equivalence ideas. Say a symbolic monomial is a formal prod-
uct over noncommuting variables; so, the entries of a λ-matrix are nonnegative in-
tegral combinations of symbolic monomials. Define an equivalence ≈ on λ-matrices
by declaring M ≈ N if M equals N modulo a bijection of their underlying symbolic
monomials. For example,(

0 b
b+ c 2a

)
≈

(
0 a

a+ d 2e

)
≈

(
0 bb

bb+ bc 2cb

)
.

Now an elementary strong shift equivalence of λ-matrices A,B is a pair of λmatrices
U, V such that A ≈ UV and B ≈ V U . Two λ-matrices are strong shift equivalent
if they are related by a chain of elementary strong shift equivalences. Nasu showed
strong shift equivalent λ-matrices define topologically conjugate quotient maps, and
with Hamachi [87] he showed the converse.

One can reformulate this setup more algebraically [38]. Given a semigroup S,
let Z+S denote its integral semigroup semiring: the set of formal nonnegative
integral combinations of elements of S, with addition and multiplication defined in
the natural way, (

∑
imisi)(

∑
j mjsj) =

∑
i,j minjsisj . If the semigroup contains
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a zero element (e.g., in a matrix semigroup, the zero matrix), then the reduced
integral semigroup semiring R0(S) is Z+S modulo that zero element.

Now, identify any finite matrix A with the N×N matrix whose upper left corner
is A and whose other entries are zero. Regard a λ-matrix as a formal sum of integer
matrices, e.g. replace(

0 b
b+ c 2a

)
= 2

(
0 0
0 a

)
+

(
0 b
b 0

)
+

(
0 0
c 0

)
with simply

2
(

0 0
0 1

)
+

(
0 1
1 0

)
+

(
0 0
1 0

)
where we view this expression as an element of R0(M), whereM is the semigroup
under multiplication of N× N matrices over Z+.

Williams’ shift equivalence equations give a natural notion of shift equivalence
of λ-matrices. The λ-matrices of future covers are shift equivalent if and only if
their sofic shifts are eventually conjugate (i.e. all large powers are conjugate) [38].
Kim and Roush, generalizing their result for matrices over Z+ [102], produced an
algorithm for deciding whether the λ-matrices of future covers are shift equivalent
[104]. A key point of this work is the following. Let Tn denote the semigroup of zero-
one matrices with row sums at most 1. Then elements ofR0(Tn) are shift equivalent
in R0(M) if and only if they are shift equivalent in the additively finitely generated
ring R0(Tn); and two given futures covers can always for some n be presented as
elements of R0(Tn) [102].

In sum, at the level of decidability, the classification problems for SFTs and sofic
shifts are at the same stage: eventual conjugacy is algebraic and decidable, while
conjugacy remains mysterious. For some classes of sofic shift, the classification
problem reduces explicitly to the classification of SFTs and the problem of extend-
ing conjugacies of subsystems to automorphisms [38, 39]. For mixing SFTs, after
[39, 114, 115, 116], this extension problem reduces to the problem of knowing the
dimension representation on the automorphism group of a mixing SFT.

Finally we mention it is possible to develop a dimension group approach to shift
equivalence of sofic shifts [104, 38].

33. Classification and flow equivalence of general shifts

Matsumoto has developed a theory of shift equivalence and strong shift equiv-
alence for arbitrary subshifts, vastly generalizing the work of Williams and Nasu.
Nasu’s defining λ-matrix is replaced by a Bratteli diagram with an additional struc-
ture, and the defining equations of shift and strong shift equivalence have analogues.
Matsumoto also [139] associated to a subshift Λ a C∗-algebra OΛ, generalizing the
seminal construction of Cuntz and Krieger [61], and these C∗-algebras are stably
isomorphic in the case that the underlying subshifts are flow equivalent. Thus, the
flow equivalence of subshifts has a particular interest from the C∗ perspective. Mat-
sumoto also developed flow equivalence invariants generalizing the Bowen-Franks
group.

See [140] for a clear development of Matsumoto’s theory at the level of topologi-
cal dynamics independent of the C∗-algebras. For recent new entropylike invariants
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for subshifts, growing out of the theory, see [124, 143]. For the C∗-algebras and as-
sociated ordered groups, see [55, 56, 57, 67, 139, 142] and their references. Below we
will only define the most central invariants, and state two problems of Matsumoto.

First we consider Matsumoto’s construction which associates a certain Bratteli
diagram to a subshift. Say two points x, y of a subshift S are k-past equivalent
(x ∼k y) if for every word w of length k, the sequence wx[k,∞) occurs in S (i.e. is
the right half of a point of S) if and only if wy[k,∞) occurs in S. Given x in S, set

vk(x) = {y[k,∞) : y ∈ S, y ∼k x} .

The finite vertex set Vk for level k of the Bratteli diagram is {vk(x) : x ∈ S}.
There is an edge labelled a from vk(x) to vk+1(y) iff the sequence ay[k + 1,∞) is
in vk(x). A Bratteli diagram yields a set of sequences x0x1x2 . . . corresponding to
labelings of infinite paths from V0; here, these are exactly the sequences x[0,∞)
such that x ∈ S. The labeled edges from Vk to Vk+1 are encoded in a λ-matrix
Mk,k+1, giving a sequence M = (Mk,k+1)k∈Z+ . We also have for k > 0 a sur-
jection Vk+1 → Vk defined by the rule vk(x) 7→ vk−1(x). Let Ik,k+1 denote the
|Vk| × |Vk+1| zero-one matrix describing this function, and I = (Ik,k+1)k the cor-
resonding sequence of matrices. Matsumoto pointed out that the matrices satisfy
a fundamental commutation relation,

Ik,k+1Mk+1,k+2 =Mk,k+1Ik+1,k+2 , k ∈ Z+.(33.1)

Matsumoto defined a symbolic matrix system to be any pair I,M such that I =
(Ik,k+1)k is a sequence of zero-one matrices with nonzero row sums and all column
sums 1;M = (Mk,k+1)k∈Z+ is a sequence of λ matrices with all letters coming from
some finite alphabet; and the commutation relation (33.1) holds. (This implicitly
assumes the matrix sizes are compatible with the multiplications.) A symbolic
matrix system determines a Bratteli diagram whose set of label sequences, as above,
equals {x[0,∞) : x ∈ S} for some subshift S. The pair (M, I) arising from the
explicit construction above using the vk(x) is the canonical symbolic matrix system
of the subshift.

Two symbolic matrix systems (M, I) and (M′, I ′) are 1-step strong shift equiva-
lent over alphabets Σ,Σ′ if there are sequencesHk, Kk of λ-matrices, over alphabets
C,D respectively, such that the following hold for all k > 0:

Ik−1,kMk,k+1 ≈ HkKk+1 , I ′k−1,kM′
k,k+1 ≈ KkHk+1

HkI ′k,k+1 = Ik−1,kHk+1 , KkI ′k,k+1 = I ′k−1,kKk+1 .

Let B,C,D and E be the alphabets used for the λ matrices of M,H,K and M′.
The meaning of the upper left ≈ above is that there is an injection φ : B → CD,
b 7→ cd, such that for every k, the map φ applied entrywise sends Ik−1,kMk,k+1 to
HkKk+1. The right side ≈ is defined in the same way with respect to some map
E → DC.

Finally, two symbolic matrix systems are strong shift equivalent if they are con-
nected by a chain of 1-step strong shift equivalences of symbolic matrix systems.

Matsumoto showed that two subshifts are topologically conjugate if and only if
their canonical symbolic matrix systems are strong shift equivalent [140, Theorem
A]. He defined the natural notion of shift equivalence, and showed that two sub-
shifts are eventually conjugate if their canonical symbolic matrix systems are shift
equivalent. (In contrast to the SFT case, it appears to be open as to whether the
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canonical symbolic matrix systems of eventually conjugate subshifts must be shift
equivalent, and it would be interesting to resolve this question.)

Lastly, suppose M, I is a symbolic matrix system. Let M, I be the pair of
sequences of matrices over Z+ which is the image ofM, I under the (augmentation)
homomorphism which replaces each letter in the alphabet with 1. (In the case that
M, I is the image of the canonical symbolic matrix system of a subshift, we will call
M, I the canonical matrix system of the subshift.) Then the sequence I defines a
dimension group ZI , as the following direct limit group:

Z|V0| I0,1−−−−→ Z|V1| I1,2−−−−→ Z|V2| I2,3−−−−→ · · · .

The sequence M defines an endomorphism λ on ZI :

Z|V0| I0,1−−−−→ Z|V1| I1,2−−−−→ Z|V2| I2,3−−−−→ · · ·yM0,1

yM1,2

yM2,3

y···
Z|V1| I1,2−−−−→ Z|V2| I2,3−−−−→ Z|V3| I3,4−−−−→ · · ·

.

(Caveat: matrices appear in [140] with transposes; we have described the action
as on row vectors to simplify notation.) The groups K0(M, I) and K1(M, I) are
respectively the cokernel and kernel of the homomorphism Id − λ : ZI → ZI [140,
Proposition 9.2]. These are generalizations of the Bowen-Franks group of an SFT (a
nearly complete invariant of flow equivalence for irreducible SFTs [127, Sec. 13.6]).
Also, they occur as K groups of the C∗-algebras OΛ associated to the subshift by
Matsumoto; when (M, I) is the canonical matrix system of the subshift (see [57]),

Ki(M, I) = Ki(OΛ) , i = 0, 1 .

Given a certain irreducibility condition on the subshift Λ, “aperiodic in past equiv-
alence” (satisfied for example by the β-shifts [57]), the C∗-algebras OΛ are purely
infinite simple nuclear C∗-algebras ([142, Proposition 5.6], [141, Cor. 6.11], [57,
Prop. 2.6, Thm. 3.4]). It is a consequence of the Kirchberg-Phillips-Rørdom the-
ory (see [170]) that within the class of purely infinite simple nuclear C∗-algebras,
the pair K0(OΛ),K1(OΛ) is a complete invariant of stable isomorphism. For gen-
eral subshifts Λ, the study of the OΛ and related C∗-algebras is more subtle (see
[57]); in particular the K groups can carry a meaningful order ideal structure.

Problem 33.2. (Matsumoto) Which pairs of abelian groups occur in subshifts as
K0(M, I),K1(M, I) for some canonical matrix system (M, I)?

Problem 33.3. (Matsumoto) Classify subshifts up to flow equivalence.

34. The Pisot Conjecture

Intersecting symbolic dynamics is the huge field of substitutions, tilings and
related topics, which merits its own problems survey. We’ll state just one popular
problem from this area: the so-called Pisot Conjecture.

A substitution rule is a map τ from some finite set A = {a1, . . . an} into words
on A, say τ : ai 7→ ai,1 · · · ai,m(i). (The elements of A might be geometric shapes,
with τ(ai) corresponding to a tiling of a dilation of ai.) There is an associated
n×n matrix A over Z+, given by A(i, j) = card{k : ai,k = aj}. The substitution is
irreducible Pisot if the characteristic polyonomial of A is irreducible with a single
root greater than 1 and every other root having modulus strictly less than 1.
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The substitution rule iterates: inductively, τn(ai) = τn−1(ai,1) · · · τn−1(ai,m(i)).
A familiar construction associates to a substitution rule a substitutive shift σ: the
domain of this subshift is the set of the two sided sequences x such that for all n, the
word x[−n, n] occurs in some τk(ai) (when the nonnegative matrix A is irreducible,
this condition does not depend on the choice of ai). When the matrix A is primitive
(e.g. when the substitution is irreducible Pisot), this subshift is uniquely ergodic.

Conjecture 34.1 (Pisot Conjecture). For an irreducible Pisot substitution, the
associated substitutive shift has pure discrete spectrum.

The Pisot Conjecture has roots at least as far back as [18, 168]. It relates to the
work of many people, and has various equivalent formulations, especially in terms
of tilings. See [14, 11], and their many references. For general background and
problems on substitutions, see [167, 77].

35. Nivat’s Conjecture

In this section, A denotes an arbitrary nonempty finite set.
Given a point x in a doubly infinite sequence on A, let px(n) be the number of

distinct words in x of length n. M. Morse and G. A. Hedlund [144] proved that x
is a periodic sequence if and only if there exists n in N such that px(n) ≤ n.

There have been various approaches to generalizing this result, including the
following conjecture of Nivat [155], in which Nx(n1, n2) denotes the number of
distinct n1 × n2 words occuring in x.

Conjecture 35.1 (Nivat). Suppose x ∈ AZ2
. If there exist positive integers n1, n2

such that Nx(n1, n2) ≤ n1n2, then x is periodic.

Quas and Zamboni [166] proved a weaker statement of the conjecture, with the
bound n1n2 replaced by (1/16)n1n2. The conjecture would be false if n1n2 were
replaced by the bound n1n2 + 1; the natural generalization of the conjecture to Z3

is false; and there are periodic x in AZ2
such that Nx(n1, n2) > n1n2 for all positive

integer pairs (n1, n2).
For more see [166], its references and its citers.

Appendix A. Commuting SFTs and periodic points

If bijections S, T commute, then for each n, S maps points of T -period n to other
points of T -period n. If T has only k points of period n, then these are periodic
points of S, of S-period at most k.

Low-order periodic point conditions of this sort sometimes imply two maps can-
not commute. For example, if |Fix(S)| = 1 and |Fix(T )| = 0, then S and T cannot
commute, because the fixed point set of S (one point) would have to be fixed by T
– but T has no fixed point.

Here is a more interesting example.

Proposition A.1. σ[2] and σ[3] (the full shifts on two and three symbols) cannot
commute.

Proof. Suppose S is topologically conjugate to σ[2], T is topologically conjugate to
σ[3] and ST = TS. We make two claims:

(1) The two fixed points of S are a T -orbit of size 2.
(2) The single S-orbit of size 2 is a T -orbit of size 2.
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To prove (1), note S has two fixed points. Either they are fixed points of T , or
they are a T -orbit of size 2. If they are fixed by T , then there is just one more fixed
point of T , which must then be fixed by S, so S has a third fixed point. This is a
contradiction. The proof of (2) is very similar.

We now know the points of S period 1 and 2 form two T -orbits of size 2. There
are exactly three T -orbits of size 2. The remaining orbit is then an S-invariant set
of two points, i.e. it contains points of S-period 1 or 2. This is a contradiction. �

To show that there is no periodic point obstruction to Conjecture 13.1, we prove
a lemma. Given U , we let On(U) denote the set of U -orbits of size (cardinality) n,
and we let P o

n(U) denote the points of least U -period n (i.e., the union of the orbits
On(U)).

Lemma A.2. Suppose S, T are bijections of countable sets X,Y with discrete topol-
ogy, M ≥ 2 and the following hold:

(1) for all n, the cardinalities an = |On(S)| and bn = |On(T )| are finite;
(2) with dn = an − bn, it holds that d1 ≥M and dn+1 − dn ≥ 3 for n ≥ 1;
(3) for all n ≥M , T has at least one orbit of size n.

Then S can commute with T .

Proof. We will define injections fk : P o
k (S)→ Y such that fkS = Tfk and Y is the

disjoint union of the images of the fk. Then ∪kfk will define a conjugacy f of S to
an automorphism of T .

We set d0 = 0, e0 = 0, Y0 = Y, T0 = T and let f0 be empty. Recursively, having
defined a subsystem Yk−1 of Y , the restriction Tk−1 of T to Yk−1, a number ek−1,
and the map fk−1, we will define fk and ek. (Then we define Yk as the complement
in Yk−1 of the image of fk, and Tk as the restriction of T to Yk.) The map fk is
defined in two steps. First, pick |Ok(Tk−1)| S-orbits of size k, and send their union
bijectively to P o

k (Tk−1); this is possible because

|P o
k (S)| − |P o

k (Tk−1)| ≥ |P o
k (S)| − |P o

k (T ))| ≥ kdk ≥ k(dk−1 + 3) > k > 0 .

Second, we define ek = |P o
k (S)| − |P o

k (Tk−1)|, noting ek > k, and we map the
remaining ek points of |P o

k (S)| bijectively to a single Tk−1 orbit of size ek. Subject
to these constraints, fk is defined in such a way that fkS = Tfk.

Clearly this process will produce the required bijection f , if at each stage k there
exists a Tk−1 orbit of size ek. We have e1 > M , so this holds at k = 1. For the rest,
by hypothesis (2), it suffices to prove by induction on k the claim that the finite
sequence e1, . . . , ek is strictly increasing. So suppose k > 1 and the claim holds at
k − 1. Then

|Ok(T )| ≥ |Ok(Tk−1)| ≥ |Ok(T )| − 1 ,

and therefore

ek − ek−1 = k
(
|Ok(S)| − |Ok(Tk−1)|

)
− (k − 1)

(
|Ok−1(S)| − |Ok−1(Tk−2)|

)
≥ k

(
|Ok(S)| − |Ok(T )|

)
− (k − 1)

(
|Ok−1(S)| − (|Ok−1(T )| − 1)

)
= kdk − (k − 1)(dk−1 + 1) = k(dk − dk−1) + dk−1 − 1 > 0 .

�
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Proposition A.3. Suppose σA and σB are mixing SFTs. Let S and T be their
restrictions to the periodic points, with discrete topologies. Then for all large n, Sn

and T can commute.

Proof. It is a straightforward exercise to use the eigenvalue structure of A and B
to show that for all large n, the maps Sn and T satisfy the assumptions of Lemma
A.2. �

Appendix B. Commuting SFTs from commuting matrices, following
Nasu

Note: AB = BA does not guarantee that σA, σB can commute (e.g., [A] =
2, B = [3] in Prop. A.1). However, we have the following result of Nasu, which is
given as a result on LR textile systems [150, Theorem 6.3(3)].

Theorem B.1. [150] Suppose A,B are commuting Z+ matrices. Then there is a
compact metric space W with selfhomeomorphisms S, T such that

(1) ST = TS, and
(2) SiT j is topologically conjugate to the SFT σAiBj whenever i > 0 and j > 0.

Proof. We will recapitulate Nasu’s construction. Suppose A and B are n×n matri-
ces over Z+, with AB = BA. View A and B as adjacency matrices for two directed
graphs, with disjoint edge sets and a common vertex set {1, 2, . . . n}. Say e.g. an
ab path from i to j is an A edge from i to some k followed by a B edge from that
k to j. “AB = BA” means that for each pair i, j the number of ab paths from i to
j equals the number of ba paths from i to j. Thus we can build a set W of (Wang)
tiles

a //

b′

��

b

��a′
//

such that each ab path is the top/right of exactly one tile and each ba path is the
left/bottom of exactly one tile. In the tile pictured, a, a′ are A-edges and b, b′ are
B-edges. The tile pictured is then determined by either of the paths

a //

b

��

or

b′

�� a′
//

Let the tile sides be unit length and let W be the space of infinite Wang tilings
of the plane with W, with tile corners on Z2. A tiling is a Wang tiling iff labels
on adjoining tile sides match; here, the labels are edges. Formally, a point w
in W is a function from Z2, where w(n) is the Wang tile from the tiling which
has lower left corner at coordinate n. The space W has the usual zero dimensional
compact metrizable topology which is the relative topology of the product topology;
concretely, we may define dist(w,w′) = 2−k if w(n) = w′(n) for all ||n|| < k and
w(n) 6= w′(n) for some n with ||n|| < k. For v ∈ Z2, we let αv denote the shift
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map on W in direction v; that is, (αvw)(n) = w(n + v). The shift maps αv are a
commuting family of homeomorphisms.

Now let us examine a piece of a Wang tiling, below.

//
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�
�

��____ ____ ____ ____ ____ ____

Following Nasu, we have horizontal coordinates increasing to the right and vertical
coordinates increasing in the down direction (e.g., (2, 1) is two units to the right
and one unit below (0, 0)). Applying the bijections cited previously, tile by tile, we
see that the solid lines of the figure determine the dashed lines. Considering this
on the infinite tiles, we see the infinite “solid-line” path obtained by extending the
solid line pattern of the figure determines the entire Wang tile. We conclude that
αv is expansive for v = (2, 1). Similarly, αv is expansive for v = (i, j) whenever
i > 0 and j > 0.

To finish, we observe that for i > 0 and j > 0 we have α(i,j) topologically
conjugate to the edge SFT X defined by the matrix AiBj . The correspondence
W → X is obtained by projecting w onto the infinite “solid-line” path described
above, and viewing that infinite path as a point x in X. For example, in the figure
the solid line path would correspond to x0x1x2 = (a0a

′
0b0)(a1a

′
1b1)(a2a

′
2b2) for some

point x in the SFT σA2B , if we use symbols aa′b to denote edges in the graph whose
adjacency matrix is A2B. �

The construction of Theorem B.1 works perfectly well (using Wang tilings of a
quarter plane rather than the plane) to produce commuting onesided SFTs from
commuting matrices. In the onesided setting, Nasu has a very striking converse
(see [150, Theorem 3.13 and Prop. 6.1]): every N2 action generated by commuting
onesided SFTs is topologically conjugate to an action given by the onesided version
of the construction of Theorem B.1.

Appendix C. LR Textile Systems

Nasu’s “textile systems” theory has proved to be a very useful tool for studying
automorphisms and endomorphisms of SFTs. A reasonable exposition of this theory
is beyond the scope of this article – we will not state various fundamental definitions
and results – but we will try to give some indication of why the approach is natural
and powerful.

Suppose that T is an automorphism of a twosided edge SFT S = σA. Suppose
that there exist Wang tiles just as in the construction of a Z2 action α on a space W
of Wang tilings as in the proof of Theorem B.1, where each ab path is the top/right
labeling of exactly one tile, and each ba path is the left/bottom labeling of exactly
one tile. Suppose also that each point x = . . . a−1a0a1 . . . in the SFT σA occurs
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as a horizontal bisequence inside some Wang tiling in W ; that it then determines
the rest of the Wang tiling; and finally that the horizontal edge bisequence directly
below it in that tiling is the point T (x). Given all this, the system of Wang tiles
is said to define a 1-1 LR textile system, and T is called an LR automorphism of
S. In this case, the Z2 action generated by σA and T is conjugate to the Z2 shift
action α on W , under the correspondence α(i,j) ←→ SiT j .

Nasu shows [150, Theorem 6.29] that an automorphism T of S = σA is an LR
automorphism if and only if it is a forward conjugacy (as we defined in Section
3). Using this, he easily deduces, given an automorphism T of σA, that there is
some k ≥ 0 such that SkT is an LR automorphism of S [150, p.66 and Theorem
6.29]. The pairs S, T and S, SkT generate the same Z2 action, modulo change of
coordinates, so the study of Z2 actions generated by an SFT and an automorphism
of the SFT can be reduced to the study of the LR textile systems.

An important fact in Nasu’s theory is that the matrix B used (as in the proof of
Theorem B.1) along with A in the construction of the LR textile system is uniquely
determined by A and the automorphism T [150, Corollary 7.25]. (We will call B
the accessory matrix for the LR automorphism T of σA.) Moreover, for i > 0 and
j ≥ 0, if T is an LR automorphism of σA with accessory matrix B, then (σA)iT j is
also an LR automorphism of σA, with accessory matrix AiBj .

Now suppose for this paragraph that T is an LR automorphism of σA, B is
the accessory matrix for T , A is N × N , i > 0 and j ≥ 0. As in Theorem B.1,
the map α(i,j) is topologically conjugate to the edge SFT σAiBj . As in Sec. 2,
we present the dimension module of σA as GA = {v ∈ VA : ∃k > 0, vAk ∈ Zn},
where VA is the rational vector space of row vectors in the image of AN . One can
check for i > 0, j ≥ 0 that the action of α(i,j) on GA is matrix multiplication by
AiBj . If i ≥ N , then rank(AiBj) = dim(VA), and the action of T on the dimension
module determines the matrix AiBj , which is the unique accessory matrix of the
LR automorphism (σA)iT j of σA. If T ′ is another LR autmorphism of σA such
that T and T ′ have the same action on the dimension module, and i ≥ N , it follows
that the SFTs (σA)iT j and (σA)iT j must be topologically conjugate.

If T is an automorphism of σA, let k ≥ 0 be such that (σA)kT is an LR automor-
phism of σA. It follows from the discussion above that whenever i ≥ jk +N > 0,
the topological conjugacy class of (σA)iT j is determined by (i, j) and the action
of T on the dimension module. (I do not know how to prove this without going
through the textile systems.)

The same argument applies (perhaps for a smaller k) to the inverses of T and T ′.
This tells us that if two automorphisms T, T ′ of S = σA have the same action on
the dimension group, then for all integral vectors (i, j) in some open cone around
(1, 0), the map SiT j is topologically conjugate to Si(T ′)j .

It is important to appreciate that the Z2 dynamics generated by σA and T are
far from determined by this fine parametrization of the α(i,j) dynamics in an open
cone. For example, we could take σA, T to be σA, S in Example 13.2. Here T acts
like the identity on the dimension module, but the Z2 dynamics of σA, T are quite
different from those of σA, Id.

We want to indicate just a little of the further structure behind the LR systems.
Nasu shows that if T is an LR automorphism of an edge shift S = σA, then T
has memory 0 and T−1 has anticipation 0, and conversely if T has memory 0 and
T−1 has anticipation 0 then T [k] is an LR automorphism of S[k] for some integer
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k ≥ 1 [154, Prop. 5.1]. (Here S[k] denotes the k-block presentation edge SFT on
sequences ΣA[k] = {x[k] : x ∈ ΣA}, where for i in Z the ith coordinate of x[k] is
defined to be (x[k])i = (xi · · ·xi+k−1); and T [k] denotes the automorphism of S[k]

induced by T , sending x[k] to (Tx)[k].)
If S, T are homeomorphisms generating a Z2 action conjugate to the action α

on some LR textile system, under the correspondence SiT j ←→ α(i,j), then Nasu
declares that T is an ELR (essentially LR) automorphism of S. He shows that the
following conditions are equivalent for an expansive automorphism T of a SFT σA

(see [154], following [151]).
(1) T is an ELR automorphism of σA.
(2) Tn is an LR automorphism of σA for some (all sufficiently large) n ≥ 1.
(3) T is in the expansive component of σA (in the sense of [41]) for the Z2

action α given by α(i,j) = σi
AT

j .
The equivalence of (1) and (2) is a consequence of [150, Prop. 8.8 and Theorem
7.22(2)]. Nasu has an example in which T is a nonexpansive automorphism such
that T has memory 0, T−1 has anticipation 0 and for all n ≥ 1 the automorphism
Tn is not LR [149] — although T is ELR and T [2] is an LR automorphism of S[2]

[150, Section 10, Example 2]. A nonexpansive ELR automorphism of an SFT σA

must lie on the boundary of an expansive component, because a nonexpansive LR
automorphism must lie on the boundary of an expansive component, [150, Cor.
6.5(2)].

Lastly, we explain the “LR” terminology. The Wang tiles of the LR textile
system can be regarded as edges in a directed graph; the initial vertex of the tile
is its labelled left side, and the terminal vertex is its labeled right side. From
a bisequence of tiles in the corresponding edge SFT, one can project onto the
bisequence of top edges or onto the bisequence of bottom edges. These maps (when
the textile system is LR) are respectively left resolving and right resolving maps
between SFTs. (E.g., the left resolving property follows from the condition that for
any pair of a horizontal edge a and a vertical edge b such that the tyerminal vertex
of a is the initial vertex of b, there exists exactly one Wang tile whose upper edge
is a and whose right edge is b.) The structure of resolving maps is fundamental to
the results obtained so far with textile systems. For a relatively short introduction
to textile systems, see [151]; for a thorough introduction, [150]; for the state of the
art, [154].

Appendix D. Commuting SFTs from matrices commuting on dimension

Let us verify Conjecture 13.1 in a special case (in fact proving a somewhat
stronger result for that case).

Proposition D.1. Suppose A,B are primitive integral matrices and there is an
isomorphism of dimension groups GA → GB which carries the action of A to an
automorphism of GB commuting with the action of B. Then for all large k, the
SFT (σA)k can commute with σB (and thus with (σB)j for all j > 0).

Proof. Let A be m×m and let B be n× n. We use the notation and presentation
of the dimension groups given as background in Section 2. E.g., GA = {v ∈ VA :
∃k > 0 such that vAk ∈ Zm}, where VA = {vAm : v ∈ Qm}. The isomorphism
GA → GB is the restriction to GA of a unique rational vector space isomorphism
φ : VA → VB . Extend φ to a linear transformation φ′ : Qm → Qn by declaring
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φ to vanish on {v ∈ Qm : vAm = 0}, which is the A-invariant subspace of Qm

complementary to VA. Let E be the m×n matrix over Q such that φ′(v) = vE for
v ∈ Qm. Let C be the n×n matrix such that wC = 0 if wBn = 0 and vEC = vAE
for v ∈ Qm. Then BC = CB.

The map v 7→ vE defines an isomorphism GA → GB which conjugates the action
of A on GA to the action of C on GB . Because BC = CB, for any j > 0 the map
v 7→ vEBj also conjugates the action of A on GA to the action of C on GB . The
rows of E must lie in GB ; thus for any large enough j the matrix EBj will have
integer entries. Because B is primitive, for large j these entries will also be strictly
postive. So after passing to suitable EBj , we may assume the entries of E are
strictly positive integers.

For 1 ≤ i ≤ n, let ei be a canonical basis vector in Qn and let wi be the element
of GB such that wiB

n = eiB
n. Let vi be the element of GA such that viE = wi.

For k > 0,

eiC
k = [wi + (ei − wi)]Ck

= wiC
k by definition of C

= viEC
k = viA

kE .

For all large k, viA
k has positive integer entries, and therefore so does viA

kE. We
have shown that for all large k, the matrix Ck is positive integral with BCk = CkB.
As explained in Appendix B, this implies that the SFTs σB and σCk can commute.
It remains to show that for all large k, the SFTs σCk and σAk are topologically
conjugate.

Let D be the n×m matrix over Q such that vED = v if v ∈ GA and wD = 0 if
wBn = 0. We have then also that wDE = w if w ∈ GB . Given k > 0, define the
matrix F = DAk. For 1 ≤ i ≤ n,

eiF = [wi + (ei − wi)]DAk

= wiDA
k by definition of D

= viA
k .

Therefore, for all large k the matrix F is, like E, a positive integral matrix. For
k ≥ n, we have FE = DAkE = DECk = Ck, where the last equality holds
because the matrices DECk and Ck have the same action on VB and also the same
action (annihilation) on the complementary B-invariant subspace {w : wBn = 0}.
Similarly, for k ≥ m we have EF = EDAk = Ak.

Thus for large k the pair E,F gives a strong shift equivalence over Z+ of Ak and
Ck. This establishes the required topological conjugacy. �

Appendix E. Primitive matrices SE but not SSE over Z+[1/p]

Suppose R is a unital subring of R. If two primitive matrices are shift equivalent
over R+, must they be strong shift equivalent over R+? For R = Z, Kim and
Roush showed the answer is no; for R = Q, the question is open. The purpose of
this section is to point out that there are nondiscrete R for which the answer is no;
the question is not just a matter of whether R is dense in R.

For their counterexample [112], Kim and Roush produced 7×7 primitive matrices
A and B which are shift equivalent over Z+ but are not strong shift equivalent over
Z+. The characteristic polynomial of both matrices is f(x) = x7 − 23x4 − 28x3 −
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33x2 − 17x + 1, which is irreducible. Let F denote the algebraic number field
Q[x]/f(x) and let OF denote the algebraic integers of F .

Proposition E.1. Let A,B, f, F be as above. Suppose p is an odd rational prime
and the ideal (p) is prime in the number field F . Let R denote the ring Z[1/p].
Then the primitive matrices A and B are shift equivalent over R+, but they are not
strong shift equivalent over R+.

Proof. The proof is to verify that the obstruction to SSE of A and B over Z+

demonstrated in [112] is also an obstruction to SSE of A and B over R+. We must
assume familiarity with [112]. First, R is a principal ideal domain and therefore for
Λ = R we still have the isomorphism π1(RS(Λ), A)→ Aut(sA/Λ). The only other
item to check is that sgc2 vanishes on Aut(sA/Λ).

Because A is nonsingular, Aut(sA/R) can be identified with the group of non-
singular matrices V over Q which commute with A and for some n > 0 satisfy that
V An and V −1An have all entries in R. This forces detV to be some power of p; so,
V ∈ Aut(sA/R) if and only if V has entries in R and detV = pk for some k ∈ Z.

In [112], for Λ = Z Kim and Roush went on to identify Aut(sA/Λ) with a sub-
group of the units group UF of OF ; with Λ = R, we similarly identify Aut(sA/Λ)
with a subgroup of the units of OF [1/p]. Because (p) is a prime ideal, a unit of
OF [1/p] is an element of UF multiplied by a power of p. Kim and Roush already
showed that sgc2 vanishes on UF so it only remains to verify that sgc2 vanishes on
p. Translated back to matrices, we have to check that sgc2 vanishes on the sse over
R given by (D,AD−1), where D is the 7× 7 diagonal matrix pI. The computation
of sgc2 only depends on the matrix entries mod 4, so this is the computation for
(I,A) or (−I,−A), and it was already shown by Kim and Roush that sgc2 vanishes
on these. �

It remains to know that there are odd rational primes p such that (p) is a prime
ideal in the number ring OF . For this I thank Larry Washington for the algebraic
number theory to follow.

First, (p) will be prime in OF if f(x) is irreducible modulo p and p does not
divide the index F = OF /Z(x); this is a special case of a general result on the
factorization of (p) in OF [58, Theorem 4.8.13]. Second, that index must divide the
discriminant of the polynomial f(x) [58, Proposition 4.4.4].

From the computer algebra program PARI, we find the prime factors of the
discriminant of our polynomial f are 2, 3, 47 and 78901. The command “factormod”
in Pari reveals that f is irreducible mod p for p = 5, 31, 61, 71 . . . . These give us
the required examples.

Moreover, there are infinitely many such p. Because f is irreducible with degree
7, 7 divides the order of the Galois group, which therefore contains an element g of
order 7. The Chebotarev density theorem says that there are infinitely many prime
ideals P in the Galois closure with mod P Galois group generated by g. Namely,
the mod P Frobenius is g. If p is the rational prime over which P lies, then the
mod p polynomial must be irreducible.

Appendix F. Examples for the onesided sofic classification problem

In this section, all shifts are onesided. The purpose is to give a class of examples
which rule out certain approaches to the classification problem for one sided sofic
shifts.
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Proposition F.1. For any n there is a mixing SFT σA, and two labellings on the
graph GA giving the canonical predecessor covers of topologically conjugate sofic
shifts S′ and S′′, such that the following hold.

(1) The matrix A is totally amalgamated (so, no labeling of a smaller graph
can define a topologically conjugate factor map).

(2) Any automorphism of σA which conjugates the covers must have coding
length at least n.

Remark F.2. S′ and S′′ above are topologically conjugate if and only if those
canonical predecessor covers are topologically conjugate.

Proof. Our sofic systems here will be near-Markov sofic shifts, i.e., quotients ob-
tained by collapsing only finitely many points from a covering SFT.

Notation: we will describe labeled graphs using letters for labeled-graph adja-
cency matrices. E.g., the matrix (a+b+c) describes the labeling of the three edges
of the graph for the matrix (3) using symbols a, b, c.

We will describe two labelings of a graph G = GA, giving quotient maps p′, p′′

onto sofic systems T ′, T ′′ and defining quotient relations E′, E′′ on σA. The sofic
systems will be conjugate iff there is an automorphism U of σA sending E′ to E′′.

The adjacency matrix A will have the block form A =
(
W X
Y Z

)
where Z = (3);

Y and X are respectively the column and row vector with every entry equal to 1;
and W is totally amalgamated with all entries in {0, 1}. The choices for X,Y, Z
guarantee A is primitive and therefore σA is mixing.

In both adjacency matrices for the labelings, A′ and A′′, the matrix Z will be
replaced by (a + b + c). Certain entries of W will also have labels from a, b, c.
All other entries have distinct labels. The labelings with a, b, c in W will serve
to identify certain periodic orbits of SW with orbits of SZ , and there will be only
finitely many such orbits identified. It follows from the structure theory of auto-
morphisms of onesided SFTs [32] that any automorphism of the SFT σA must act
like the identity on the subsystem σW (because A is totally amalgamated, W is
zero-one, and the only automorphisms of the graph with adjacency matrix A are
the permutations of the three edges corresponding to Z). Thus there will be an
automorphism U of σA sending E′ to E′′ iff there is an automorphism of σA which
moves orbits in σZ in a way to line up the identifications.

Here is one way to go about this. Given N , enumerate the σZ periodic orbits of
period at most N as Oi, 1 ≤ i ≤ I. From the ith orbit, pick a point xi. Let D be
a d × d matrix which is the direct sum of cyclic periodic matrices Mi, 1 ≤ i ≤ I,
with Mi k × k if xi has period k. Then W will be d × d with D as a submatrix.
Make choices of 0 and 1 for the unspecified entries of W so that all columns of W
are distinct (for example, for 1 ≤ i < I allow a single transition from some row
through Mi to some row through Mi+1, and set all other entries equal to 0).

Now put labels on the entries of the Mi which match xi. E.g. if xi is the point
abbabbabb . . . , then the three 1’s in Mi are replaced in order by a, b, b. Aside from
the dictated labelings on Z and the Mi, let all other labels be distinct. This defines
the matrix A′, and E′ collapses only certain pairs of finite orbits, one pair for each
Oi.

Now let V be a given automorphism of the 3 shift σZ . A′′ will be defined in the
same way, except that the labeling on Mi will correspond not to xi but rather to
V (xi). Again, an automorphism U of σA must act like the identity on σW . So,
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U will send E′′ to E′ iff on σZ it acts like V . The arbitrary automorphism V of
the three shift σZ can be extended to an automorphism of σA: any sequence of
splittings and amalgamations for the matrix (3) can be extended to A.

There are infinitely many automorphisms of the three shift [32], and they are
separated by their actions on periodic points. Given n, we can pick V of minimal
coding length at least n, and then pick N such that none of the finite set of auto-
morphisms of σZ which have shorter coding length have the same action as V on all
periodic points of period less than or equal to N . For this V , with the construction
above we obtain that the extension U has minimal coding length at least n. �

Further progress on Problem 21.2 may involve Ashley’s decomposition theory
for automorphisms of a onesided SFT [7].
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