HW1, due Wednesday, September 9
 Math 600, Fall 2023
 Patrick Brosnan, Instructor

Practice Problems and reading: Read Sections 1 and 2 of Chapter I of Aluffi's book. Then do the following problems from Aluffi for practice, but do not turn them in.
I.1) 4
I.2) 7

The format is that " 1.1 " means the exercises from Section 1 of Chapter I in Aluff's book (which start on page 8).

Graded Problems: Work the following problems for a grade. Turn them in on Canvas.

1. (4 points each) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the function given by $f(x)=\sin x$.
(1) Is f one-one?
(2) Is f onto?
(3) What is $f(\mathbb{R})$?
(4) What is $f([0,10])$?
(5) What is $f^{-1}([-1,1])$?
(6) What is $f^{-1}([2, \infty))$?
2. (4 points each) Which of the following are equivalence relations on \mathbb{Z} ?
(1) The set $R=\left\{(x, y) \in \mathbb{Z}^{2}: 2 \mid x^{2}-y^{2}\right\}$. (Here $a \mid b$ means that a divides b.)
(2) The set $R=\left\{(x, y) \in \mathbb{Z}^{2}: x-y \geq 0\right\}$.
(3) The set $R=\left\{(x, y) \in \mathbb{Z}^{2}: \sin (x \pi / 5)=\sin (y \pi / 5)\right\}$.
(4) The set of all pairs $(x, y) \in \mathbb{Z}^{2}$ such that $x-y=z^{3}$ for some $z \in \mathbb{Z}$.
3. (20 points) Suppose $f: X \rightarrow Z$ and $g: Y \rightarrow Z$ are mappings. The fiber product of f and g is the set

$$
X \times_{Z} Y:=\{(x, y) \in X \times Y: f(x)=g(y)\} .
$$

One particular example of this is when $X=Y$ and $f=g$. Then I write $K(f):=X \times_{Y} X$. Some authors call $K(f)$ the kernel pair of f.

Show that, for any mapping $f: X \rightarrow Z, K(f)$ is an equivalence relation on X.
4. (20 points) Suppose X and Y are sets. I write $\operatorname{Fun}(X, Y)$ for the set of all functions from X to Y.
(1) Suppose $X=\{1,2,3\}$ and $Y=\{0,1\}$. Write down all elements of $\operatorname{Fun}(X, Y)$. If $f: X \rightarrow Y$ is a function, then you can write it explicitly by writing down the triple $(f(1), f(2), f(3))$.
(2) Suppose X has n elements and Y has m elements, with n and m both nonnegative integers. What is the cardinality of the set $\operatorname{Fun}(X, Y)$? In other words, how many elements does it have?
5. Suppose X, Y, Z and W are all sets. Suppose $g: Y \rightarrow Z$ is a function in $\operatorname{Fun}(Y, Z)$. We can define two new functions $g_{*}: \operatorname{Fun}(X, Y) \rightarrow$ $\operatorname{Fun}(X, Z)$ and $g^{*}: \operatorname{Fun}(Z, W) \rightarrow \operatorname{Fun}(Y, W)$ as follows:

$$
\begin{gathered}
g_{*}(f):=g \circ f \\
g^{*}(h)=h \circ g .
\end{gathered}
$$

The map g_{*} is sometimes called the pushforward function and the $\operatorname{map} g^{*}$ is sometimes called the pullback function.
(1) (10 points) If g is one-one, show that g_{*} is also one-one.
(2) (10 points) If g is onto, show that g^{*} is one-one.
(3) (10 point bonus) If g_{*} is one-one for every set X, show that g is one-one.
(4) (10 point bonus) If g^{*} is one-one for every set W, show that g is onto.

