HW1, due Wednesday, September 9 Math 600, Fall 2023 Patrick Brosnan, Instructor

Practice Problems and reading: Read Sections 1 and 2 of Chapter I of Aluffi's book. Then do the following problems from Aluffi for practice, but do not turn them in.

- I.1) 4
- I.2) 7

The format is that "1.1" means the exercises from Section 1 of Chapter I in Aluffi's book (which start on page 8).

Graded Problems: Work the following problems for a grade. Turn them in on Canvas.

- **1.** (4 points each) Let $f : \mathbb{R} \to \mathbb{R}$ be the function given by $f(x) = \sin x$.
 - (1) Is f one-one?
 - (2) Is f onto?
 - (3) What is $f(\mathbb{R})$?
 - (4) What is f([0, 10])?
 - (5) What is $f^{-1}([-1,1])$?
 - (6) What is $f^{-1}([2,\infty))$?

2. (4 points each) Which of the following are equivalence relations on \mathbb{Z} ?

- (1) The set $R = \{(x, y) \in \mathbb{Z}^2 : 2 \mid x^2 y^2\}$. (Here $a \mid b$ means that a divides b.)
- (2) The set $R = \{(x, y) \in \mathbb{Z}^2 : x y \ge 0\}.$
- (3) The set $R = \{(x, y) \in \mathbb{Z}^2 : \sin(x\pi/5) = \sin(y\pi/5)\}.$
- (4) The set of all pairs $(x,y) \in \mathbb{Z}^2$ such that $x y = z^3$ for some $z \in \mathbb{Z}$.

3. (20 points) Suppose $f : X \to Z$ and $g : Y \to Z$ are mappings. The *fiber product* of *f* and *g* is the set

$$X \times_Z Y := \{(x, y) \in X \times Y : f(x) = g(y)\}.$$

One particular example of this is when X = Y and f = g. Then I write $K(f) := X \times_Y X$. Some authors call K(f) the *kernel pair* of f.

Show that, for any mapping $f : X \to Z$, K(f) is an equivalence relation on *X*.

4. (20 points) Suppose *X* and *Y* are sets. I write Fun(X,Y) for the set of all functions from *X* to *Y*.

- (1) Suppose $X = \{1,2,3\}$ and $Y = \{0,1\}$. Write down all elements of Fun(X,Y). If $f: X \to Y$ is a function, then you can write it explicitly by writing down the triple (f(1), f(2), f(3)).
- (2) Suppose X has n elements and Y has m elements, with n and m both nonnegative integers. What is the cardinality of the set Fun(X,Y)? In other words, how many elements does it have?

5. Suppose X, Y, Z and W are all sets. Suppose $g: Y \to Z$ is a function in Fun(Y,Z). We can define two new functions $g_*: Fun(X,Y) \to Fun(X,Z)$ and $g^*: Fun(Z,W) \to Fun(Y,W)$ as follows:

$$g_*(f) := g \circ f$$
$$g^*(h) = h \circ g.$$

The map g_* is sometimes called the *pushforward function* and the map g^* is sometimes called the *pullback function*.

- (1) (10 points) If g is one-one, show that g_* is also one-one.
- (2) (10 points) If g is onto, show that g^* is one-one.
- (3) (10 point bonus) If g_* is one-one for every set X, show that g is one-one.
- (4) (10 point bonus) If g* is one-one for every set W, show that g is onto.