HW3, due Wednesday, September 22

Math 600, Fall 2023
Patrick Brosnan, Instructor

Practice Problems and Reading: Read Sections I. 5 and II. 1 of Aluffi's book. Then do the following problems from Aluffi for practice, but do not turn them in.
I.5) $6,8,11$
II.1) $4,5,8,13$

The format is that "I.1" means the exercises from Section 1 of Chapter I in Aluffi's book (which start on page 8).

Terminology: Recall from class that if X is a set and T is a subset of $X \times X$, then the equivalence relation on X generated by T is the intersection of all equivalence relations on X containing T.

Graded Problems: Work the following problems for a grade. Turn them in on Canvas.

1. (25 points) Suppose X is a set and $R \subseteq X \times X$ is a relation on X which is reflexive and symmetric. Let \bar{R} denote the equivalence relation on X generated by R. Suppose $a, b \in X$. Show that the following conditions are equivalent:
(1) $(a, b) \in \bar{R}$;
(2) there exists an integer $n \geq 1$ and elements $x_{0}, x_{1}, \ldots, x_{n}$ in X with $a=x_{0}$ and $b=x_{n}$ and with $\left(x_{i-1}, x_{i}\right) \in R$ for $i=1, \ldots, n$.
2. (25 points) Suppose \mathbf{C} is a category with a final object 1 , and suppose X is an object in C. Show that the product of X and 1 exists in C. What is it?
3. An object $\mathbf{0}$ in category \mathbf{C} is said to be a zero object if it both initial and final.
(1) (13 points) Show that the category $\mathrm{FVect}_{\mathbb{R}}$ of finite dimensional vector spaces over \mathbf{R} has a zero object. What is it?
(2) (12 points) Show that the category of pointed sets (from Example 3.8) also has a zero object. What is it?
4. Suppose X is a set. If $U \subseteq V \subseteq X$, write $i_{U, V}: U \rightarrow V$ for the inclusion of U in V. In other words, $i_{U, V}(x)=x$ for $x \in U$.

Define a category \mathbf{C} as follows:

- objects are subsets $U \subset X$;
- $\operatorname{Hom}_{\mathbf{C}}(U, V)= \begin{cases}i_{U, V}, & \text { if } U \subseteq V ; \\ \emptyset, & \text { otherwise } .\end{cases}$
- composition of morphisms is composition of functions.
(1) (13 points) Show that if U and V are objects in C, then the product of U and V exists in \mathbf{C}. What is it?
(2) (12 points) Show that if U and V are objects in \mathbf{C}, then the coproduct of U and V exists in \mathbf{C}. What is it?

