HW5, due Wednesday, October 4
 Math 600, Fall 2023
 Patrick Brosnan, Instructor

Practice Problems and Reading: Read Sections II.4-6 of Aluff's book.

Terminology: Recall from class that a submagma of a magma M is a subset of M which is closed under the binary operation of M. A submonoid of a monoid M is a submagma containing the idenity element of M.

Graded Problems: Work the following problems for a grade. Turn them in on Canvas.

1. (24 points) Show that the intersection of a nonempty collection of submagmas (resp. submonoids, resp. subgroups) is a submagma (resp. submonoid, resp. subgroup). In other words,
(a) If M is a magma, I is a nonempty set, and $\left\{M_{i}\right\}_{i \in I}$ are submagmas of M, show that $\cap_{i \in I} M_{i}$ is a submagma.
(b) If M is a monoid, I is a nonempty set, and $\left\{M_{i}\right\}_{i \in I}$ are submonoids of M, show that $\cap_{i \in I} M_{i}$ is a submonoid.
(c) If M is a group, I is a nonempty set, and $\left\{M_{i}\right\}_{i \in I}$ are subgroups of M, show that $\cap_{i \in I} M_{i}$ is a subgroup.
Do not assume that I is finite.
2. (30 points) Suppose M is a magma (resp. monoid, resp. group) and S is a subset of M. The submagma (resp. submonoid, resp. subgroup) of M generated by S is the intersection of all submagmas (resp. submonoids, resp. subgroups) containing S.

Note that, by the previous problem, the submagma (resp. submonoid, resp. subgroup) of M generated by S is actually a submagma (resp. submonoid, resp. subgroup) of M.
(a) Suppose M is a monoid and $S \subseteq M$. Show that the submonoid $\langle S\rangle_{m}$ of M generated by S consists of the identity element of M and all elements of M, which can be written in the form $s_{1} s_{2} \cdots s_{n}$ with n a positive integer and $s_{i} \in S$.
(b) Suppose G is a group and $S \subseteq G$. Show that the subgroups $\langle S\rangle$ of G generated by S consists of the identity element of G and all elements of G, which can be written in the form $g_{1} g_{2} \cdots g_{n}$ with n a positive integer and either $g_{i} \in S$ or $g_{i}^{-1} \in S$.
3. (24 points) Let $\mathbf{G L}_{2}(\mathbb{R})$ denote the group of 2×2-matrices

$$
T=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

with $\operatorname{det} T \neq 0$ and with a, b, c and d real. (The group structure is matrix multiplication, and, for T as above $\operatorname{det} T=a d-b c$.)

For a matrix T as above, write

$$
T^{*}=\left(\begin{array}{ll}
a & c \\
b & d
\end{array}\right)
$$

for the transpose of T.
(a) Show that $\mathbf{S L}_{2}(\mathbb{R}):=\left\{T \in \mathbf{G L}_{2}(\mathbb{R}): \operatorname{det} T=1\right\}$ is a subgroup of $\mathbf{G L} \mathbf{L}_{2}(\mathbb{R})$. Traditionally, $\mathbf{G L}_{2}(\mathbb{R})$ is called the group of general linear transformations, and $\mathbf{S L}_{2}(\mathbb{R})$ is called the subgroup of special linear transformations.
(b) Write $\mathbf{O}_{2}(\mathbb{R})=\left\{T \in \mathbf{G L}_{2}(\mathbb{R}): T T^{*}=I\right\}$. Show that $\mathbf{O}_{2}(\mathbb{R}) \leq$ $\mathbf{G L}_{2}(\mathbb{R})$ as well. Traditionally $\mathbf{O}_{2}(\mathbb{R})$ is called the group of orthogonal transformations. The group $\mathrm{SO}_{2}(\mathbb{R}):=\mathbf{O}_{2}(\mathbb{R}) \cap$ $\mathbf{S L}_{2}(\mathbb{R})$ is called the special orthogonal group.
(c) For each $\theta \in \mathbb{R}$, set

$$
\rho(\theta)=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right) .
$$

Show that $\rho(\theta) \in \mathrm{SO}_{2}(\mathbb{R})$ for each θ, and that the map ρ : $\mathbb{R} \rightarrow \mathrm{SO}_{2}(\mathbb{R})$ is onto.
(d) Show that $\rho: \mathbb{R} \rightarrow \mathrm{SO}_{2}(\mathbb{R})$ is a group homomorphism. (Here the binary operation on \mathbb{R} is usual addition.)
(e) Let

$$
\tau:=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

Show that $\tau^{2}=I$ and $\tau \rho(\theta) \tau=\rho(-\theta)$.
(f) Show that $\mathbf{O}_{2}(\mathbb{R})$ is generated by τ and $\mathrm{SO}_{2}(\mathbb{R})$. In other words, $\mathbf{O}_{2}(\mathbb{R})=\left\langle\tau \cup \mathrm{SO}_{2}(\mathbb{R})\right\rangle$.
4. (22 points) Let n be a positive integer and let G_{n} denote the subgroup of $\mathbf{G L}_{2}(\mathbb{R})$ generated by the matrices τ and $r:=\rho(2 \pi / n)$ above. Show that every element of G_{n} can be written uniquely as
$\tau^{i} r^{j}$ where $i \in\{0,1\}$ and $j \in\{0,1, \ldots, n-1\}$. Conclude that G_{n} has $2 n$ elements.

