Practice Problems and Reading: Read Sections II.4-6 of Aluffi's book.

Terminology: Recall from class that a submagma of a magma *M* is a subset of *M* which is closed under the binary operation of *M*. A submonoid of a monoid *M* is a submagma containing the idenity element of *M*.

Graded Problems: Work the following problems for a grade. Turn them in on Canvas.

1. (**24 points**) Show that the intersection of a nonempty collection of submagmas (resp. submonoids, resp. subgroups) is a submagma (resp. submonoid, resp. subgroup). In other words,

- (a) If *M* is a magma, *I* is a nonempty set, and $\{M_i\}_{i \in I}$ are submagmas of *M*, show that $\bigcap_{i \in I} M_i$ is a submagma.
- (b) If *M* is a monoid, *I* is a nonempty set, and $\{M_i\}_{i \in I}$ are submonoids of *M*, show that $\bigcap_{i \in I} M_i$ is a submonoid.
- (c) If *M* is a group, *I* is a nonempty set, and $\{M_i\}_{i \in I}$ are subgroups of *M*, show that $\bigcap_{i \in I} M_i$ is a subgroup.

Do not assume that *I* is finite.

2. (**30 points**) Suppose M is a magma (resp. monoid, resp. group) and S is a subset of M. The submagma (resp. submonoid, resp. subgroup) of M generated by S is the intersection of all submagmas (resp. submonoids, resp. subgroups) containing S.

Note that, by the previous problem, the submagma (resp. submonoid, resp. subgroup) of M generated by S is actually a submagma (resp. submonoid, resp. subgroup) of M.

(a) Suppose *M* is a monoid and $S \subseteq M$. Show that the submonoid $\langle S \rangle_m$ of *M* generated by *S* consists of the identity element of *M* and all elements of *M*, which can be written in the form $s_1 s_2 \cdots s_n$ with *n* a positive integer and $s_i \in S$.

- (b) Suppose G is a group and S ⊆ G. Show that the subgroups ⟨S⟩ of G generated by S consists of the identity element of G and all elements of G, which can be written in the form g₁g₂ ··· g_n with n a positive integer and either g_i ∈ S or g_i⁻¹ ∈ S.
- **3.** (24 points) Let $GL_2(\mathbb{R})$ denote the group of 2×2 -matrices

$$T = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

with det $T \neq 0$ and with *a*, *b*, *c* and *d* real. (The group structure is matrix multiplication, and, for *T* as above det T = ad - bc.)

For a matrix *T* as above, write

$$T^* = \begin{pmatrix} a & c \\ b & d \end{pmatrix}$$

for the transpose of T.

- (a) Show that $SL_2(\mathbb{R}) := \{T \in GL_2(\mathbb{R}) : \det T = 1\}$ is a subgroup of $GL_2(\mathbb{R})$. Traditionally, $GL_2(\mathbb{R})$ is called the group of *general linear transformations*, and $SL_2(\mathbb{R})$ is called the subgroup of *special linear transformations*.
- (b) Write O₂(ℝ) = {T ∈ GL₂(ℝ) : TT* = I}. Show that O₂(ℝ) ≤ GL₂(ℝ) as well. Traditionally O₂(ℝ) is called the group of *orthogonal transformations*. The group SO₂(ℝ) := O₂(ℝ) ∩ SL₂(ℝ) is called the *special orthogonal group*.
- (c) For each $\theta \in \mathbb{R}$, set

$$\rho(\theta) = \begin{pmatrix} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{pmatrix}.$$

Show that $\rho(\theta) \in SO_2(\mathbb{R})$ for each θ , and that the map $\rho : \mathbb{R} \to SO_2(\mathbb{R})$ is onto.

- (d) Show that $\rho : \mathbb{R} \to SO_2(\mathbb{R})$ is a group homomorphism. (Here the binary operation on \mathbb{R} is usual addition.)
- (e) Let

$$\tau := \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

Show that $\tau^2 = I$ and $\tau \rho(\theta) \tau = \rho(-\theta)$.

(f) Show that $O_2(\mathbb{R})$ is generated by τ and $SO_2(\mathbb{R})$. In other words, $O_2(\mathbb{R}) = \langle \tau \cup SO_2(\mathbb{R}) \rangle$.

4. (**22 points**) Let *n* be a positive integer and let G_n denote the subgroup of $\operatorname{GL}_2(\mathbb{R})$ generated by the matrices τ and $r := \rho(2\pi/n)$ above. Show that every element of G_n can be written uniquely as

 $\mathbf{2}$

 $\tau^i r^j$ where $i \in \{0,1\}$ and $j \in \{0,1,\ldots,n-1\}$. Conclude that G_n has 2n elements.