Practice Problems and Reading: Read Sections II.7-8 of Aluffi's book.

Terminology: A subgroup $N \le G$ of a group *G* is *normal* if, for all $g \in G$ and all $n \in N$, $gng^{-1} \in N$. (See Definition 7.1 on page 88 of Aluffi.)

Graded Problems: Work the following problems for a grade. Turn them in on Canvas.

- **1.** (**21 points**) Suppose *G* is a group with identity element 1.
 - (a) If $R \le G \times G$ is a congruence on *G*, show that $N = N(R) := \{x \in G : (x, 1) \in R\}$ is a normal subgroup of *G*.
 - (b) In the situation of (a) above, show that $(x, y) \in R \Leftrightarrow xN = yN$.
 - (c) Show that the map $R \mapsto N(R)$ sets up a one-one correspondence between congruences on G and normal subgroups of G.

2. (**20 points**) Let \mathbb{Z} denote the set of integers considered as a group under addition. For *G* a group, let

ev : Hom_{Groups}(
$$\mathbb{Z}, G$$
) $\rightarrow G$

be the map given by $ev(\phi) = \phi(1)$. Show that ev is one-one and onto.

3. (**20 points**) Show that a morphism $f : M \to N$ in the category of monoids is a monomorphism if and only if it is one-one. (**Hint:** Use the evaluation map of H04.)

4. (20 points) Suppose $\phi : G \to H$ and $\psi : G \to H$ are group homomorphisms. Set $K := \{g \in G : \phi(g) = \psi(g)\}$, and write $i : K \to G$ for the inclusion. Show that (K, i) is the equalizer of ϕ and ψ .

5. (19 points) Suppose G is a commutative group and n is an integer. Show that the map $\phi_n : G \to G$ given by $g \mapsto g^n$ is a group homomorphism.