HW8, due Wednesday, November 8 Math 600, Fall 2023 Patrick Brosnan, Instructor

Practice Problems and Reading: Read Sections II.8 and III.1 of Aluffi's book. Work the following problems, but don't turn them

in for a grade.

- II.8: 17
- III.1: 1, 6, 12

Graded Problems: Work the following problems for a grade. Turn them in on Canvas.

1. (20 points) Show that gcd(a,n) = gcd(a+bn,n) for any three integers *a*, *b* and *n*.

2. (30 points) Suppose *n* is an integer. Show that

- (a) End_{Groups}($\mathbb{Z}/n, +$) = ($\mathbb{Z}/n, \times$);
- (b) Aut_{Groups} $(\mathbb{Z}/n, +) = (\mathbb{Z}/n, \times)^{\times};$
- (c) $(\mathbb{Z}/n, \times)^{\times} = \{[a] \in \mathbb{Z}/n : \gcd(a, n) = 1\}.$

Here the notation is as follows: $(\mathbb{Z}/n, +)$ is the group \mathbb{Z}/n with the operation of addition; $(\mathbb{Z}/n, \times)$ is the monoid \mathbb{Z}/n with the operation of multiplication; for any monoid M, M^{\times} is the group of units of M.

Note that, by Problem 1, $[a] = [a'] \in \mathbb{Z}/n \Rightarrow gcd(a,n) = gcd(a',n)$.

In (a), the map from $(\mathbb{Z}/n, \times)$ to $\operatorname{End}_{\operatorname{Groups}}(\mathbb{Z}/n), +)$ is the one taking $x \in \mathbb{Z}/n$ to the map $\phi_x : \mathbb{Z}/n \to \mathbb{Z}/n$ given by $\phi_x(y) = xy$. For (a), you should check that,

- (i) for each $x, \phi_x \in \text{End}_{\text{Groups}}(\mathbb{Z}/n), +)$,
- (ii) the map $x \mapsto \phi_x$ is a monoid isomorphism from $(\mathbb{Z}/n, \times)$ to $\operatorname{End}_{\operatorname{Groups}}(\mathbb{Z}/n), +).$

3. (**20 points**) Suppose $f : G \to Q$ is a split epimorphism in the category of groups. Show that $G \cong K \rtimes_{\theta} Q$ where $K = \ker f$ and $\theta : Q \to \operatorname{Aut}_{\operatorname{Groups}} K$ is an action of Q on K by group automorphisms. (**Hint:** Use the splitting to get a subgroup of G isomorphic to Q and an action of that subgroup by inner automorphisms on K.)

4. (**30 points**) As most of you know, there was a (bad) typo on the last problem on Exam 1. Consequently, I have to throw out that problem (and give everyone full credit for it). Here's the corrected problem, which I'd like you to do for this homework.

Suppose *G* is a group and *X* is a *G*-set. If $H \le G$, we write $X^H := \{x \in X : \operatorname{Stab}_G(x) \ge H\}$. Now consider G/H as a *G*-set under the usual left action, and define a map

$$\operatorname{ev}:\operatorname{Hom}_{G\operatorname{-Sets}}(G/H,X)\to X$$

by $ev(\phi) = \phi(H)$.

- (a) Show that the image of ev is contained X^H .
- (b) Show that the image of ev is equal to X^H .
- (c) Show that ev is one-to-one.