HW9, due Wednesday, November 15
Math 600, Fall 2023
Patrick Brosnan, Instructor

Practice Problems and Reading: Read Sections III. 2 and III. 3 of Aluffi's book.

Graded Problems: Work the following problems for a grade. Turn them in on Canvas.

1. (20 points) Suppose R is a set with two binary operations + and \cdot such that $(R,+)$ is a group, (R, \cdot) is a monoid and the distributive laws

$$
\begin{aligned}
& x \cdot(y+z)=x \cdot y+x \cdot z \\
& (x+y) \cdot z=x \cdot y+y \cdot z
\end{aligned}
$$

hold. In other words, suppose $(R,+, \cdot)$ satisfies all the ring axioms except the axiom that addition is commutative. Show that, in fact, addition is forced to be commutative; so $(R,+, \cdot)$ is a ring.
2. (20 points) A subring of a ring $R=(R,+, \cdot)$ is a subset S of R, which is both a subgroup of $(R,+)$ and a submonoid of (R, \cdot). Let R denote the set of complex numbers of the form $\frac{m}{2}+\frac{n}{2} \sqrt{-3}$, where m and n are integers and $m+n$ is even. Show that R is a subring of \mathbb{C}.
3. (30 points) An element of x in a ring R is nilpotent if $x^{n}=0$ for some positive integer n. Say what the nilpotent elements are in the following rings.
(a) \mathbb{Z}.
(b) $\mathbb{Z} / 10$.
(c) $\mathbb{Z} / 12$.

Here $\mathbb{Z} / 10$ and $\mathbb{Z} / 12$ have the usual ring structure of addition and multiplication described in class.
4. (30 points) A ring homomorphism from a ring A to a ring B is a $\operatorname{map} \varphi: A \rightarrow B$ which is simultaneously a group homomorphism from $(A,+)$ to $(B,+)$ and a monoid homomorphism from (A, \cdot) to (B, \cdot). From this we get a category Rings whose objects are rings and whose morphism are ring homomorphisms.
(a) Show that $E \operatorname{End}_{\text {Rings }} \mathbb{Z}=\operatorname{End}_{\text {Rings }} \mathbb{Q}=\{i d\}$. So, there are no nontrivial endomorphisms of \mathbb{Z} or \mathbb{Q} in the category of rings. It follows, of course, that Aut Rings $^{\mathbb{Z}}=$ Aut $_{\text {Rings }} \mathbb{Q}=\{\mathrm{id}\}$.
(b) Show that End Rings $^{\mathbb{R}}=$ Aut $_{\text {Rings }} \mathbb{R}=\{\mathrm{id}\}$ as well. To do this, the trick is to note that any endomorphism of \mathbb{R} has to take squares to squares. Then use this to show that any ring endomorphism σ of \mathbb{R} has to be continuous.
(c) Show that complex conjugation is a ring automorphism of \mathbb{C}, and use that to conclude that Aut $_{\text {Rings }} \mathbb{C}$ contains a subgroup isomorphic to $\mathbb{Z} / 2$.

