Practice Problems and Reading: Read Sections III.2 and III.3 of Aluffi's book.

Graded Problems: Work the following problems for a grade. Turn them in on Canvas.

1. (20 points) Suppose R is a set with two binary operations + and \cdot such that (R,+) is a group, (R,\cdot) is a monoid and the distributive laws

$$x \cdot (y+z) = x \cdot y + x \cdot z$$
$$(x+y) \cdot z = x \cdot y + y \cdot z$$

hold. In other words, suppose $(R, +, \cdot)$ satisfies all the ring axioms except the axiom that addition is commutative. Show that, in fact, addition is forced to be commutative; so $(R, +, \cdot)$ is a ring.

2. (20 points) A *subring* of a ring $R = (R, +, \cdot)$ is a subset *S* of *R*, which is both a subgroup of (R, +) and a submonoid of (R, \cdot) . Let *R* denote the set of complex numbers of the form $\frac{m}{2} + \frac{n}{2}\sqrt{-3}$, where *m* and *n* are integers and m + n is even. Show that *R* is a subring of \mathbb{C} .

3. (**30 points**) An element of *x* in a ring *R* is *nilpotent* if $x^n = 0$ for some positive integer *n*. Say what the nilpotent elements are in the following rings.

(a) Z.
(b) Z/10.
(c) Z/12.

Here $\mathbb{Z}/10$ and $\mathbb{Z}/12$ have the usual ring structure of addition and multiplication described in class.

4. (**30 points**) A *ring homomorphism* from a ring *A* to a ring *B* is a map $\varphi : A \to B$ which is simultaneously a group homomorphism from (A, +) to (B, +) and a monoid homomorphism from (A, \cdot) to (B, \cdot) . From this we get a category Rings whose objects are rings and whose morphism are ring homomorphisms.

- (a) Show that $End_{Rings}\mathbb{Z} = End_{Rings}\mathbb{Q} = \{id\}$. So, there are no nontrivial endomorphisms of \mathbb{Z} or \mathbb{Q} in the category of rings. It follows, of course, that $Aut_{Rings}\mathbb{Z} = Aut_{Rings}\mathbb{Q} = \{id\}$.
- (b) Show that $\operatorname{End}_{\operatorname{Rings}} \mathbb{R} = \operatorname{Aut}_{\operatorname{Rings}} \mathbb{R} = \{\operatorname{id}\}$ as well. To do this, the trick is to note that any endomorphism of \mathbb{R} has to take squares to squares. Then use this to show that any ring endomorphism σ of \mathbb{R} has to be continuous.
- (c) Show that complex conjugation is a ring automorphism of \mathbb{C} , and use that to conclude that $\operatorname{Aut}_{\operatorname{Rings}}\mathbb{C}$ contains a subgroup isomorphic to $\mathbb{Z}/2$.