HW10, due Wednesday, December 6
Math 600, Fall 2023
Patrick Brosnan, Instructor

Practice Problems and Reading: Read Sections III. 4 and III. 5 of Aluffi's book. Then do the following problems:
III. 4 2, 3, 4, 8, 15
III. 5 1, 3, 5

Graded Problems: Work the following problems for a grade. Turn them in on Canvas.

1. (20 points) Suppose R is a ring, and $S \subseteq R$. The centralizer $C(S)$ of S is the set of all $x \in R$ such that, for all $s \in S, x s=s x$. Show that $C(S)$ is a subring of R.

The center of R is, by definition, $C(R)$. So this shows that the center of R is a subring.
2. (20 points) A (not necessarily commutative) ring R is simple if there are exactly two two-sided ideals in R (necessarily the zero ideal and R itself). Show that the characteristic of a simple ring R is either 0 or a prime number p.
3. (20 points) Let R be a commutative ring and let $I, J \subseteq R$ be two ideals in R. Write $I J$ for the product ideal and write $P=\{a b: a \in$ $I, b \in J\}$.
(a) Show that $I J=P$ if I and J are principal.
(b) Set $R=\mathbb{R}[x, y]$ and $I=(x, y)$. Show that $\{a b: a, b \in I\} \subsetneq I^{2}$. (Here $I^{2}=I I$.)
4. (40 points) Let $R=M_{2}(\mathbb{R})$, the ring of 2×2 matrices with coefficients in \mathbb{R}.
(a) Suppose $v=(a, b) \in \mathbb{R}^{2}$, and set $I(v):=\{T \in R: T v=0\}$. Show that $I(v)$ is a non-zero left-ideal in R, which is proper as long as $v \neq 0$.
(b) Show that all nonzero left ideals in R are of the form $I(v)$ for some vector v.
(c) Show that R is simple.
(d) Show that the center of R is the set of matrices of the form

$$
\left(\begin{array}{ll}
\lambda & 0 \\
0 & \lambda
\end{array}\right),
$$

where $\lambda \in \mathbb{R}$.

