HW8, due Friday, November 11 Math 403, Fall 2011 Patrick Brosnan, Instructor

Reading Assignment

Begin reading about rings in Chapter 3.1-2.

Problem 1. (20 points) Suppose S is a set and G is a group. Let G^S denote the set of all functions $f: S \to G$. Define a binary operation * on G^S by setting (f * g)(s) = f(s)g(s). Show that G^S with the binary operation * is a group. Moreover, show that G^S is abelian if G is.

Problem 2. (20 points) Suppose G is a group and A is an abelian group.

- (a) Show that the set Hom(G, A) of all group homomorphisms from G to A is a subgroup of A^G .
- (b) If $f: G \to H$ is a homomorphism of groups, define $f^*: \text{Hom}(H, A) \to \text{Hom}(G, A)$ by $f^*(\gamma) = \gamma \circ f$. Show that f^* is a group homomorphism.
- (c) Suppose $g: H \to K$ is another group homomorphism, so that (b) gives us a group homomophisms $g^*: \operatorname{Hom}(K, A) \to \operatorname{Hom}(H, A)$. Show that $(g \circ f)^* = f^* \circ g^*$.

Problem 3. (20 points) Let \mathbf{Q} denote the group of rational numbers (with addition as the binary operation) and let \mathbf{Z} denote the subgroup of integers. The *Pontryagin dual* of a group G is the group $G^* = \text{Hom}(G, \mathbf{Q}/\mathbf{Z})$. (It is most useful when G is abelian).

- (a) Show that if $G = H \times K$, the G^* is isomorphic to $H^* \times K^*$.
- (b) Show that G^* is finite if G is a finite group.
- (c) Show that, if n is a non-negative integer, then $(\mathbf{Z}/n)^*$ is isomorphic to \mathbf{Z}/n .
- (d) Suppose $g \in G$. Define a map $\operatorname{ev}_g : G^* \to \mathbf{Q}/\mathbf{Z}$ by $\operatorname{ev}_g(\lambda) = \lambda(g)$. Show that $\operatorname{ev}_g \in \operatorname{Hom}(G^*, \mathbf{Q}/\mathbf{Z}) = G^{**}$.
- (e) Define a map $ev: G \to G^{**}$ by $g \mapsto ev_g$. Show that ev is a group homomorphism.

Problem 4. (20 points) Suppose $G = \mathbf{Z}/n$ for some non-negative integer n. Show that G^* is isomorphic to \mathbf{Z}/n . Compute G^* (up to isomorphism) for the symmetric group on 3 letters.

Problem 5. Find an example of a non-abelian group G such that every subgroup H of G is normal. (Hint: Look for one of order ≤ 8 .)