HW8, due Friday, November 11
 Math 403, Fall 2011
 Patrick Brosnan, Instructor

Reading Assignment

Begin reading about rings in Chapter 3.1-2.
Problem 1. (20 points) Suppose S is a set and G is a group. Let G^{S} denote the set of all functions $f: S \rightarrow G$. Define a binary operation $*$ on G^{S} by setting $(f * g)(s)=f(s) g(s)$. Show that G^{S} with the binary operation $*$ is a group. Moreover, show that G^{S} is abelian if G is.

Problem 2. (20 points) Suppose G is a group and A is an abelian group.
(a) Show that the set $\operatorname{Hom}(G, A)$ of all group homomorphisms from G to A is a subgroup of A^{G}.
(b) If $f: G \rightarrow H$ is a homomorphism of groups, define $f^{*}: \operatorname{Hom}(H, A) \rightarrow \operatorname{Hom}(G, A)$ by $f^{*}(\gamma)=\gamma \circ f$. Show that f^{*} is a group homomorphism.
(c) Suppose $g: H \rightarrow K$ is another group homomorphism, so that (b) gives us a group homomophisms $g^{*}: \operatorname{Hom}(K, A) \rightarrow \operatorname{Hom}(H, A)$. Show that $(g \circ f)^{*}=f^{*} \circ g^{*}$.
Problem 3. (20 points) Let \mathbf{Q} denote the group of rational numbers (with addition as the binary operation) and let \mathbf{Z} denote the subgroup of integers. The Pontryagin dual of a group G is the group $G^{*}=\operatorname{Hom}(G, \mathbf{Q} / \mathbf{Z})$. (It is most useful when G is abelian).
(a) Show that if $G=H \times K$, the G^{*} is isomorphic to $H^{*} \times K^{*}$.
(b) Show that G^{*} is finite if G is a finite group.
(c) Show that, if n is a non-negative integer, then $(\mathbf{Z} / n)^{*}$ is isomorphic to \mathbf{Z} / n.
(d) Suppose $g \in G$. Define a ${\operatorname{map~} \mathrm{ev}_{g}: G^{*} \rightarrow \mathbf{Q} / \mathbf{Z} \text { by } \mathrm{ev}_{g}(\lambda)=\lambda(g) \text {. Show that } \mathrm{ev}_{g} \in \operatorname{Hom}\left(G^{*}, \mathbf{Q} / \mathbf{Z}\right)=}_{\mathbf{~}}=$ $G^{* *}$.
(e) Define a map ev : $G \rightarrow G^{* *}$ by $g \mapsto \mathrm{ev}_{g}$. Show that ev is a group homomorphism.

Problem 4. (20 points) Suppose $G=\mathbf{Z} / n$ for some non-negative integer n. Show that G^{*} is isomorphic to \mathbf{Z} / n. Compute G^{*} (up to isomorphism) for the symmetric group on 3 letters.

Problem 5. Find an example of a non-abelian group G such that every subgroup H of G is normal. (Hint: Look for one of order ≤ 8.)

