HW8, due Friday, November 18 Math 403, Fall 2011 Patrick Brosnan, Instructor

Reading Assignment

Begin reading about rings in Chapter 3.1-2. Also read the material in Herstein about the symmetric group.

Problem 1. (40 points) Let G be a group and $a \in G$. An element b in G is said to be *conjugate* to a if there exists a $g \in G$ such that $gag^{-1} = b$.

- (a) Show that the relation "a is conjugate to b" is an equivalence relation in G. The equivalence classes are called *conjugacy classes* and the conjugacy class of a is the set of all elements of G conjugate to a.
- (b) What are the conjugacy classes in each of the three non-abelian groups of order ≤ 8 ?

Problem 2. (40 points) Let n and k be positive integers with $k \le n$ and let i_1, \ldots, i_k be distinct integers in $\{1, 2, \ldots, n\}$.

- (a) Suppose $1 \notin \{i_1, ..., i_k\}$. Compute $(1i_1)(1i_2..., i_k)(1i_1)$.
- (b) Show that $(i_1 i_2 \dots i_k)$ is conjugate in S_n to $(12 \dots k)$.

Problem 3. (20 points) Suppose R is a ring. The center Z(R) of R is the set of all $r \in R$ such that, for all $x \in R$, rx = xr.

- (a) Show that the center of a ring is a subring. That is show that 0 and 1 are in Z(R) and, for any $x, y \in Z(R), x y$ and xy are in Z(R).
- (b) Let $M_2(\mathbf{R})$ denote the set of all 2×2 matrices with real coefficients. What is the center of $M_2(\mathbf{R})$?