HW8, due Friday, November 18
Math 403, Fall 2011
Patrick Brosnan, Instructor

Reading Assignment

Begin reading about rings in Chapter 3.1-2. Also read the material in Herstein about the symmetric group.

Problem 1. (40 points) Let G be a group and $a \in G$. An element b in G is said to be conjugate to a if there exists a $g \in G$ such that $g a g^{-1}=b$.
(a) Show that the relation " a is conjugate to b " is an equivalence relation in G. The equivalence classes are called conjugacy classes and the conjugacy class of a is the set of all elements of G conjugate to a.
(b) What are the conjugacy classes in each of the three non-abelian groups of order ≤ 8 ?

Problem 2. (40 points) Let n and k be positive integers with $k \leq n$ and let $i_{1}, \ldots i_{k}$ be distinct integers in $\{1,2, \ldots, n\}$.
(a) Suppose $1 \notin\left\{i_{1}, \ldots i_{k}\right\}$. Compute $\left(1 i_{1}\right)\left(1 i_{2} \ldots i_{k}\right)\left(1 i_{1}\right)$.
(b) Show that $\left(i_{1} i_{2} \ldots i_{k}\right)$ is conjugate in S_{n} to $(12 \ldots k)$.

Problem 3. (20 points) Suppose R is a ring. The center $Z(R)$ of R is the set of all $r \in R$ such that, for all $x \in R, r x=x r$.
(a) Show that the center of a ring is a subring. That is show that 0 and 1 are in $Z(R)$ and, for any $x, y \in Z(R), x-y$ and $x y$ are in $Z(R)$.
(b) Let $M_{2}(\mathbf{R})$ denote the set of all 2×2 matrices with real coefficients. What is the center of $M_{2}(\mathbf{R})$?

