HW10, due Friday, December 2
 Math 403, Fall 2011
 Patrick Brosnan, Instructor

Reading Assignment

Begin reading about rings in Chapter 3.1-2.
Problem 1. (15 points) Let $K=\{a+b \sqrt{2}: a, b \in \mathbf{Q}\}$ and let $A=\{a+b \sqrt{2} \in K: a, b \in \mathbf{Z}\}$.
(a) Show that K is a subring of \mathbf{R}.
(b) Show that A is a subring of K.
(c) Show that K is a field.

Problem 2. (10 points) Show that a subring of an integral domain is an integral domain.
Problem 3. (10 points) Suppose D is a division ring and I is a left ideal in D. Show that either $I=\{0\}$ or $I=D$. Then draw the following conclusion: If $\rho: D \rightarrow R$ is a homomorphism of rings where D is a division ring, then either $R=0$ or ρ is one-to-one.
Problem 4. (10 points) Suppose R is a commutative ring.
(a) Suppose A is a subring of $R \times R$. Assume that A is also an equivalence relation on R. Show that $I_{A}:=\{r \in R:(r, 0) \in A\}$ is an ideal in R.
(b) Suppose I is an ideal in R. Set $A_{I}:=\{(r, s) \in R \times R: r-s \in I\}$. Show that A_{I} is a subring of $R \times R$ which is also an equivalence relation on R.
(c) (5 point bonus) Show that $I_{A_{I}}=I$ for any ideal $I \subset R$, and that $A_{I_{A}}=A$ for any equivalence relation $A \subset R \times R$.

Problem 5. (25 points) Suppose R is a ring.
(a) Show that, if A and B are subrings of R, then so is $A \cap B$.
(b) Generalize (a) in the following way. Suppose $\left\{A_{i}\right\}_{i \in I}$ is a set of subrings of R. Show that $A=\cap_{i \in I} A_{i}$ is a subgring of R.
(c) Suppose S is a subset of R. Let A denote the intersection of all subgrings of R containing S. Show that A is the smallest subring of R containing S. It is called the subring of R generated by S.
(d) Keeping a notation of (c), define a sequence A_{n} of subsets of R inductively as follows: $A_{0}=\{0,1\} \cup S$. $A_{n}=\left\{x-y, x y: x, y \in A_{n-1}\right\}$. Show that $A=\cup_{n=0}^{\infty} A_{n}$. (In other words, A is the union of the sets A_{n}).
(e) Now suppose that B is a subring of R and S is a subset of R. Let $B[S]$ denote the subring of R generated by $B \cup S$. Now set $R=\mathbf{R}$ (the ring of real numbers), $B=\mathbf{Q}$ and $S=\{\sqrt{2}\}$. Set $\mathbf{Q}[\sqrt{2}]:=B[S]$. Show that $\mathbf{Q}[\sqrt{2}]=\{a+b \sqrt{2}: a, b \in \mathbf{Q}\}$.

Problem 6. (30 points) Let

$$
H=\left\{\left(\begin{array}{cc}
t+x i & -y-z i \\
y-z i & t-x i
\end{array}\right): t, x, y, z \in \mathbf{R}\right\}
$$

contained in the ring $M_{2}(\mathbf{C})$ of 2×2 matrices with complex coefficients. To ease the notation, define

$$
\vec{a}:=\left(\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right), \vec{b}:=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right), \vec{c}:=\left(\begin{array}{cc}
0 & -i \\
-i & 0
\end{array}\right) .
$$

These are elements of H and the general matrix in H can then be written (uniquely and more compactly) as $t+x \vec{a}+y \vec{b}+z \vec{c}$.
(a) Show that $\vec{a}^{2}=\vec{b}^{2}=\vec{c}^{2}=-1$ and $\vec{a} \vec{b}=\vec{c}, \vec{b} \vec{c}=\vec{a}, \overrightarrow{c a}=\vec{b}$.
(b) Show that H is a subring of $M_{2}(\mathbf{C})$.
(c) Show that the determinant of any element of H is a non-negative real number. Show further that $\operatorname{det} X=0$ iff $X=0$ for $X \in H$.
(d) For $X=t+x \vec{a}+y \vec{b}+z \vec{c} \in H$, define $X^{*}:=t-x \vec{a}-y \vec{b}-z \vec{c}$. Show that $X X^{*}=\operatorname{det} X$.
(e) Show that, for $X \neq 0, X^{-1}=(\operatorname{det} X)^{-1} X^{*}$. Then conclude that H is a division ring.
(f) Show that $\vec{b} \vec{a}=-\vec{c}$ and conclude that H is not a field.

