HW11, due Monday, December 12 Math 403, Fall 2011 Patrick Brosnan, Instructor

Reading Assignment

Begin reading about rings in Chapter 3.1-2.

Problem 1. (40 points) Recall that, if X is a set, A(X) denotes the group of all maps $\phi : X \to X$, which are one-one and onto. If G is a group and $g \in G$, define $L(g) : G \to G$ by L(g)(h) = gh.

- (a) Show that, if $g_1, g_2 \in G$, then $L(g_1g_2) = L(g_1) \circ L(g_2)$.
- (b) Show that, if $g \in G$, L(g) is one-one and onto. Conclude that $L: G \to A(G)$ given by $g \mapsto L(g)$ is a homomorphism of groups.
- (c) Show that L(g) is the identity in A(G) iff g is the identity in G. Conclude that $L: G \to A(G)$ is one-to-one.
- (d) Draw the following conclusion: If G is a group with n elements, then G is isomorphic to a subgroup of the symmetric group S_n . (This is called *Cayley's theorem.*)

Problem 2. (40 points) Let A be a ring.

- (a) Show that there exists exactly one ring homomorphism $h : \mathbb{Z} \to A$. (Hint: If h is a ring homomorphism, we must have h(1) = 1, so h(2) = 1 + 1, h(-2) = -(1 + 1), etc.)
- (b) Let $h : \mathbb{Z} \to A$ be as in (a). Then ker $h = n\mathbb{Z}$ for some (uniquely determined) $n \in \mathbb{N}$. Set char A = n; this is called the *characteristic* of A. Show that, if A is an integral domain, then char A is either prime or 0.
- (c) Show that any field of characteristic p > 0 contains a subfield isomorphic to \mathbf{Z}/p .
- (d) Show that any field of characteristic 0 contains a subfield isomorphic to the rationals.

Problem 3. (20 points) Write $\mathbf{F}_2 := \mathbf{Z}/2$ for the field with 2 elements. Set $p = x^2 + x + 1 \in \mathbf{F}_2[x]$. (a) Show that p is irreducible.

- (b) Show that $K := \mathbf{F}_2[x]/p\mathbf{F}_2[x]$ is a field.
- (c) Show K has 4 elements and write down the addition and multiplication table in K.