HW2, due Tuesday, September 24 Math 403, Fall 2013 Patrick Brosnan, Instructor

Note. Problems 3 and 7 are worth 5 points. All other problems are worth 15 points.

1. Suppose a,b,c are non-zero integers. Show that (a,bc) = 1 if and only if (a,b) = (a,c) = 1.

2. Suppose $a, b, c \in \mathbb{Z}$ with $a \neq 0$. Show that (a, b) = (a, b + ca).

3. Suppose X and Y are finite sets. Let *n* denote the number of elements of X and let *m* denote the number of elements of Y. Write Fun(X,Y) for the set of functions from X to Y. In class, we noted that Fun(X,Y) has m^n elements. How many one-one functions are there in Fun(X,Y)? You do not have to rigorously prove your answer, but you should give a convincing argument.

4. Let $M_2(\mathbb{R})$ denote the set of 2×2 -matrices with coefficients in the real numbers, and let

 $*: M_2(\mathbb{R}) \times M_2(\mathbb{R})$

denote the binary operation X * Y = XY - YX where *XY* denote the matrix multiplication of *X* and *Y*. Show that * is not associative. The operation * is known as the *Lie bracket* operation. Usually X * Y is written as [X, Y].

5. Find the inverse of the element [31] of the group U(54). Write your answer as [n] for some integer 0 < n < 54.

6. Suppose *G* is a group with identity element *e*. If $g^2 = e$ for all $g \in G$, show that *G* is abelian.

7. Suppose *M* is a monoid with binary operation * and identity element *e*. We say that an element $m \in M$ is *central* if, for all $n \in M$, m * n = n * m. The center of *M* is the set Z(M) of all central elements of *M*. Show that Z(M) is a submonoid of *M*. That is, show that $e \in Z(M)$ and that, if $m, n \in Z(M)$ then $m * n \in Z(M)$.

8. Let *M* denote the monoid $M_2(\mathbb{R})$. What is Z(M)? Prove your answer.