HW2, due Tuesday, September 24
 Math 403, Fall 2013
 Patrick Brosnan, Instructor

Note. Problems 3 and 7 are worth 5 points. All other problems are worth 15 points.

1. Suppose a, b, c are non-zero integers. Show that $(a, b c)=1$ if and only if $(a, b)=(a, c)=1$.
2. Suppose $a, b, c \in \mathbb{Z}$ with $a \neq 0$. Show that $(a, b)=(a, b+c a)$.
3. Suppose X and Y are finite sets. Let n denote the number of elements of X and let m denote the number of elements of Y. Write Fun (X, Y) for the set of functions from X to Y. In class, we noted that $\operatorname{Fun}(X, Y)$ has m^{n} elements. How many one-one functions are there in $\operatorname{Fun}(X, Y)$? You do not have to rigorously prove your answer, but you should give a convincing argument.
4. Let $M_{2}(\mathbb{R})$ denote the set of 2×2-matrices with coefficients in the real numbers, and let

$$
*: M_{2}(\mathbb{R}) \times M_{2}(\mathbb{R})
$$

denote the binary operation $X * Y=X Y-Y X$ where $X Y$ denote the matrix multiplication of X and Y. Show that $*$ is not associative. The operation $*$ is known as the Lie bracket operation. Usually $X * Y$ is written as $[X, Y]$.
5. Find the inverse of the element [31] of the group $U(54)$. Write your answer as $[n]$ for some integer $0<n<54$.
6. Suppose G is a group with identity element e. If $g^{2}=e$ for all $g \in G$, show that G is abelian.
7. Suppose M is a monoid with binary operation $*$ and identity element e. We say that an element $m \in M$ is central if, for all $n \in M, m * n=n * m$. The center of M is the set $Z(M)$ of all central elements of M. Show that $Z(M)$ is a submonoid of M. That is, show that $e \in Z(M)$ and that, if $m, n \in Z(M)$ then $m * n \in Z(M)$.
8. Let M denote the monoid $M_{2}(\mathbb{R})$. What is $Z(M)$? Prove your answer.

