HW4, due Thursday, October 17
 Math 403, Fall 2013
 Patrick Brosnan, Instructor

1 (10 points). Let $\sigma \in S_{5}$ denote the element

$$
\sigma=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
2 & 4 & 5 & 1 & 3
\end{array}\right)
$$

Write σ as a product of disjoint cycles.
2 (10 points). What is the order of the element σ in Problem 1?
3 (20 points). What is the maximal possible order an element in S_{7} ?
4 (20 points). Suppose that $\alpha, \beta \in S_{n}$. If α is even, show that $\beta \alpha \beta^{-1}$ is also even.
5 (20 points). Suppose n is an integer greater than 2 . Write Z_{n} for the group \mathbb{Z} / n, and write $G_{n}=U(n) \times Z_{n}$. Here $U(n)$ denotes the group of $[a] \in \mathbb{Z} / n$ such that $(a, n)=1$ under multiplication. Define a binary operation on G_{n} by setting

$$
(a, x)(b, y)=(a b, a y+x)
$$

for $a, b \in U(n)$ and $x, y \in Z_{n}$. Show that, with the above binary operation, G_{n} is a group.
6 (20 points). Let $H_{n}=\left\{(a, b) \in G_{n}: a= \pm 1\right\}$. Show that H_{n} is a subgroup of G_{n}. Then show that H_{n} is isomorphic to the dihedral group of order $2 n$.

