HW5, due Tuesday, November 5 Math 403, Fall 2013 Patrick Brosnan, Instructor

Practice Problems: Do the following problems from Gallian for practice, but do not turn them in. The format below is that **G4** means "Chapter 4 of Gallian."

G4: 1, 3, 5, 13, 45 **G5:** 1, 3, 5, 11, 31 **G6:** 1, 5 **G7:** 11, 17, 31

1. Suppose *G* is a group and *H* and *K* are two subgroups. Suppose further that *K* has prime order and that *H* does not not contain *K*. Show that $H \cap K = \{e\}$.

2. Show that any group of order 275 has an element of order 5.

3. Show that the mapping of U(17) to itself given by $x \mapsto x^3$ is an automorphism.

4. Let G_n be the group from Problem 4 of HW4, and suppose *n* is odd. Let H_n be the group from Problem 5 of HW4, which is isomorphic to the dihedral group with 2n elements.

(a) Show that, if $g \in G_n$ and $h \in H_n$, then $ghg^{-1} \in H_n$.

- (b) Use part (a) to show that, for $g \in G_n$, the map $\varphi_g : H_n \to H_n$ given by $h \mapsto ghg^{-1}$ is a group automorphism.
- (c) (10 bonus points) Show that every group automorphism of H_n is of the form φ_g for some $g \in G_n$. And conclude that $\operatorname{Aut} D_n \cong G_n$.