HW7, due Tuesday, December 10
Math 403, Fall 2013
Patrick Brosnan, Instructor
Practice Problems: Do the following problems from Gallian for practice, but do not turn them in. The format below is that G4 means "Chapter 4 of Gallian."

G12: 9, 19, 27
G13: $5,11,15$
G14: 9
G15: 13
G16: 3,15
Graded Problemes: Work the following problems for a grade.

1. Let M be an abelian group and write $\operatorname{End} M$ for the set of group homomorphisms $\phi: M \rightarrow M$. In class, I mentioned that End M has two binary operations: $(f, g) \mapsto f+g$ and $(f, g) \mapsto f \circ g$ given on $m \in M$ by the formulas

$$
\begin{aligned}
(f+g)(m) & =f(m)+g(m) \\
(f \circ g)(m) & =f(g(m)) .
\end{aligned}
$$

Show that End M with these operations is a ring with unity.
2. Suppose a and b are elements of a commutative ring R. We say that a divides b and write $a \mid b$ if there is an element c of R such that $a c=b$. Let R be the ring consisting of real numbers of the form $a+b \sqrt{3}$ with $a, b \in \mathbb{Z}$. Show that $1+\sqrt{3}$ does not divide $5+2 \sqrt{3}$.
3. Suppose R is an integral domain and r is an element of R satisfying $r^{2}=r$. Show that r is either 0 or 1 .
4. Suppose p is a prime number and k is an integer satisfying $1<k<p$. Show that p divides $\binom{p}{k}$. Using this, show that, if R is a commutative ring of characteristic p and $x, y \in R$, then $(x+y)^{p}=x^{p}+y^{p}$.

