HW1, due Friday, February 3
 Math 403, Spring 2017
 Patrick Brosnan, Instructor

Practice Problems: Do the following problems from Herstein for practice, but do not turn them in. The format below is that H4.5 means "Chapter 4, Section 5 of Herstein."

H1.2: 2, 5
H1.3: 1, 3, 7, 14, 15
H1.4: 2, 4, 7

Graded Problems: Work the following problems for a grade.

1. Suppose $m, n \in \mathbb{Z}$ with $n>0$. Show that $m+2 m^{2} n \geq 0$.
2. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the function given by $f(x)=\sin x$.
(1) Is f one-one?
(2) Is f onto?
(3) What is $f(\mathbb{R})$?
(4) What is $f([0,10])$?
(5) What is $f^{-1}([-1,1])$?
(6) What is $f^{-1}([2, \infty))$?
3. Let $f \in S_{4}$ be the permutation given by the matrix

$$
\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 3 & 4 & 1
\end{array}\right)
$$

(1) Compute f^{2}, f^{3}, f^{4} and f^{5}.
(2) Compute f^{-1}.
(3) (10 point bonus). Notice a pattern and say what f^{k} is for all $k \in \mathbb{Z}$.
4. Suppose S is a set. A subset $R \subset S \times S$ is called an equivalence relation on S if the following three properties hold.
(1) For all $s \in S,(s, s) \in R$.
(2) If $\left(s_{1}, s_{2}\right) \in R$ then $\left(s_{2}, s_{1}\right) \in R$.
(3) If $\left(s_{1}, s_{2}\right) \in R$ and $\left(s_{2}, s_{3}\right) \in R$, then $\left(s_{1}, s_{3}\right) \in R$.

Here (1) is known as the reflexive property, (2) is known as the symmetric property and (3) is known as the transitive property.

It is traditional to write $x \sim_{R} y$ if $(x, y) \in R$. And often we drop the R when R is understood and just write $x \sim y$. If we want to emphasize the R we sometimes also write $x R y$.

Which of the following are equivalence relations on \mathbb{Z} ?
(1) The set $R=\left\{(x, y) \in \mathbb{Z}^{2}: 2 \mid x-y\right\}$.
(2) The $\operatorname{set} R=\left\{(x, y) \in \mathbb{Z}^{2}: x-y \geq 0\right\}$.
(3) The set $R=\left\{(x, y) \in \mathbb{Z}^{2}: \sin (x \pi / 5)=\sin (y \pi / 5)\right\}$.
(4) The set of all pairs $(x, y) \in \mathbb{Z}^{2}$ such that $x-y=z^{3}$ for some $z \in \mathbb{Z}$.
5. Suppose $f: X \rightarrow Z$ and $g: Y \rightarrow Z$ are mappings. The fiber product of f and g is the set

$$
X \times_{Z} Y:=\{(x, y) \in X \times Y: f(x)=g(y)\} .
$$

One particular example of this is when $X=Y$ and $f=g$. Then the product $X \times_{Z} X$ is called the difference kernel of f. Sometimes it is written as $K(f)$.

Show that, for any mapping $f: X \rightarrow Z$, the difference kernel $K(f)$ is an equivalence relation on X.

