HW1, due Friday, February 3 Math 403, Spring 2017 **Patrick Brosnan, Instructor**

Practice Problems: Do the following problems from Herstein for practice, but do not turn them in. The format below is that **H4.5** means "Chapter 4, Section 5 of Herstein."

H1.2: 2, 5 H1.3: 1, 3, 7, 14, 15 H1.4: 2, 4, 7

Graded Problems: Work the following problems for a grade.

- **1.** Suppose $m, n \in \mathbb{Z}$ with n > 0. Show that $m + 2m^2n \ge 0$.
- **2.** Let $f : \mathbb{R} \to \mathbb{R}$ be the function given by $f(x) = \sin x$.
 - (1) Is f one-one?
 - (2) Is f onto?
 - (3) What is $f(\mathbb{R})$?
 - (4) What is f([0, 10])?

 - (5) What is $f^{-1}([-1,1])$? (6) What is $f^{-1}([2,\infty))$?
- **3.** Let $f \in S_4$ be the permutation given by the matrix

$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix}$$

- (1) Compute f², f³, f⁴ and f⁵.
 (2) Compute f⁻¹.
- (3) (10 point bonus). Notice a pattern and say what f^k is for all $k \in \mathbb{Z}$.

4. Suppose *S* is a set. A subset $R \subset S \times S$ is called an *equivalence relation* on *S* if the following three properties hold.

- (1) For all $s \in S$, $(s, s) \in R$.
- (2) If $(s_1, s_2) \in R$ then $(s_2, s_1) \in R$.
- (3) If $(s_1, s_2) \in R$ and $(s_2, s_3) \in R$, then $(s_1, s_3) \in R$.

Here (1) is known as the *reflexive property*, (2) is known as the *symmetric prop*erty and (3) is known as the transitive property.

It is traditional to write $x \sim_R y$ if $(x, y) \in R$. And often we drop the *R* when *R* is understood and just write $x \sim y$. If we want to emphasize the *R* we sometimes also write *xRv*.

Which of the following are equivalence relations on \mathbb{Z} ?

- (1) The set $R = \{(x, y) \in \mathbb{Z}^2 : 2 \mid x y\}.$
- (2) The set $R = \{(x, y) \in \mathbb{Z}^2 : x y \ge 0\}.$
- (3) The set $R = \{(x, y) \in \mathbb{Z}^2 : \sin(x\pi/5) = \sin(y\pi/5)\}.$
- (4) The set of all pairs $(x, y) \in \mathbb{Z}^2$ such that $x y = z^3$ for some $z \in \mathbb{Z}$.

5. Suppose $f: X \to Z$ and $g: Y \to Z$ are mappings. The *fiber product* of f and g is the set

$$X \times_Z Y := \{(x, y) \in X \times Y : f(x) = g(y)\}.$$

One particular example of this is when X = Y and f = g. Then the product $X \times_Z X$ is called the *difference kernel* of f. Sometimes it is written as K(f).

Show that, for any mapping $f: X \to Z$, the difference kernel K(f) is an equivalence relation on X.