## HW4, due Friday, March 10 <br> Math 403, Spring 2017 <br> Patrick Brosnan, Instructor

Practice Problems: Do the following problems from Herstein for practice, but do not turn them in. The format below is that H4.5 means "Chapter 4, Section 5 of Herstein."

H2.4: $1,3,7$,
H2.5: $3,12,15$
H2.6: $1,2,7,8$

Graded Problems: Work the following problems for a grade.

1. Suppose $n$ and $m$ are non-zero integers. The least common multiple of $n$ and $m$ is $n m /(n, m)$. We write either $\operatorname{lcm}(n, m)$ or $[n, m]$ for the least common multiple. Show the following
(1) $n$ and $m$ both divide $[n, m]$.
(2) If $e$ is an integer divisible by both $n$ and $m$, then $[n, m] \mid e$.
2. Suppose $G$ is a group and $x \in G$. Then centralizer of $x$ is the set $Z(x)=\{y \in$ $G: y x=x y\}$. In other words, the centralizer of $x$ is the set of all elements of $G$ which commute with $x$. Show that $Z(x) \leq G$.
3. Suppose $G$ is a group and $x, y$ are two elements of $G$ which commute with each other: $x y=y x$.
(1) Show that, for any integer $i,(x y)^{i}=x^{i} y^{i}$.
(2) Suppose $|x|=n,|y|=m$ with $n$ and $m$ finite. Show that $|x y|$ divides $[n, m]$.
(3) Suppose $n$ and $m$ above are relatively prime. Show that $|x y|$ is equal to [ $n, m]$.
(4) Given an example to show that the conclusion of (3) is false without the assumption that $(n, m)=1$.
4. Write the cycle decomposition of the element

$$
\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
3 & 2 & 1 & 5 & 4
\end{array}\right)
$$

of $S_{5}$.

