HW5, due Friday, March 17 Math 403, Spring 2017 Patrick Brosnan, Instructor

Practice Problems: Do the following problems from Herstein for practice, but do not turn them in. The format below is that **H4.5** means "Chapter 4, Section 5 of Herstein."

H2.7: 5 **H2.9:** 1, 3

Graded Problems: Work the following problems for a grade.

1. Show that the dihedral group D_4 is isomorphic to the subgroup P of S_4 generated by (1234) and (13). (**Hint:** Use the result of Problem 4.5 in HW 3.) Moreover, show that there is an isomorphism $\varphi : D_4 \to P$ such that $\varphi(R) = (1234)$ and $\varphi(T) = (13)$.

2. List the left and right cosets of the subgroup P of D_4 in Problem 1. Is P normal?

3. Let *U* denote the set of 2×2 matrices of the form

 $\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}$

with $x \in \mathbb{R}$.

(1) Show that *U* is a subgroup of $GL_2(\mathbb{R})$.

- (2) Show that U is not normal.
- (3) Show that U is isomorphic to \mathbb{R} as a group.

4. Suppose *G* is a group, $H \leq G$ and $x \in G$. Show that $xHx^{-1} \leq G$.

5. Suppose *G* is a group and *H*, *K* are subgroups of *G*. We say that *H* is *conjugate* to *K* if $H = xKx^{-1}$ for some $x \in G$.

- (1) Show that the property of being conjugate is an equivalence relation on the set of subgroups of G.
- (2) Show that any two conjugate subgroups are isomorphic as groups.
- (3) Show that the subgroups U of Problems 3 is conjugate to the subgroup L consisting of all matrices of the form

$$\begin{pmatrix} 1 & 0 \\ x & 1 \end{pmatrix}.$$