Graded Problems: Work the following problems for a grade.

1. Suppose *G* is a group. The set $\operatorname{Aut} G$ of group automorphism of *G* is the set of all group homomorphisms $f: G \to G$ which are one-one and onto. Show that $\operatorname{Aut} G$ is a subgroup of the group A(G) of all automorphisms of the set of elements of *G*.

- **2.** Suppose that *G* is a group and $\varphi \in \operatorname{Aut} G$.
 - (a) If $g \in G$ and $k \in \mathbb{Z}$, show that $\varphi(g^k) = \varphi(g)^k$.
 - (b) If $g \in G$, show that $|g| = |\varphi(g)|$.
 - (c) If $G = \langle g \rangle$, show that $G = \langle \varphi(g) \rangle$ as well.
 - (d) If $G = \langle g \rangle = \langle h \rangle$ show that there exists a unique automorphism $\varphi \in \operatorname{Aut} G$ such that $\varphi(g) = h$.
- **3.** Suppose G is a group. For each $g \in G$, define a map $\varphi_g : G \to G$ by setting $\varphi_g(h) = ghg^{-1}$.
 - (a) Show that $\varphi_g \in \operatorname{Aut} G$.
 - (b) Show that the map $\varphi: G \to \operatorname{Aut} G$ given by $g \mapsto \varphi_g$ is a group homomorphism.
 - (c) Show that the kernel of φ is the subgroup Z(G) consisting of all $g \in G$ such that gh = hg for all $h \in G$. This subgroup is called the *center* of *G*.

4. Suppose $f: M \to N$ is a morphism of magmas. Recall that this means that, for $m_1, m_2 \in M$, $f(m_1m_2) = f(m_1)f(m_2)$. Show that the difference kernel $K(f) = \{(m_1, m_2) \in M \times M : f(m_1) = f(m_2)\}$ is a submagma of $M \times M$. Similarly, if $f: M \to N$ are monoids, show that the difference kernel K(f) is a submonoid of $M \times M$.

5. Suppose *G* is a group and $H \le G$. Set $R = \{(x,y) \in G \times G : x^{-1}y \in H\}$, $L = \{(x,y) \in G \times G : xy^{-1} \in H\}$.

- (a) Show that both *L* and *R* are equivalence relations.
- (b) Show that *R* is the difference kernel of the map $q_R : G \to G/H$ given by $g \mapsto gH$. Similarly, show that *L* is the difference kernel of the map $q_L : G \to H \setminus G$ given by $g \mapsto Hg$.
- (c) Show that *H* is normal in *G* if and only if *R* is a subgroup of $G \times G$.

6 (20 point bonus). Suppose *M* is a magma, *N* is a set and $q: M \to N$ is a surjective mapping with difference kernel $K(q) = \{(m_1, m_2) \in M \times M : q(m_1) = q(m_2)\}$. Suppose that K(q) is a submagma of $M \times M$. Show that there is a unique binary operation operation on *N* such that $q: M \to N$ is a magma homomorphism. (**Hint:** Imitate the proof given in class of the corresponding result for groups.)