HW6v2, due Friday, March 31

Math 403, Spring 2017
Patrick Brosnan, Instructor

Graded Problems: Work the following problems for a grade.

1. Suppose G is a group. The set Aut G of group automorphism of G is the set of all group homomorphisms $f: G \rightarrow G$ which are one-one and onto. Show that Aut G is a subgroup of the group $A(G)$ of all automorphisms of the set of elements of G.
2. Suppose that G is a group and $\varphi \in \operatorname{Aut} G$.
(a) If $g \in G$ and $k \in \mathbb{Z}$, show that $\varphi\left(g^{k}\right)=\varphi(g)^{k}$.
(b) If $g \in G$, show that $|g|=|\varphi(g)|$.
(c) If $G=\langle g\rangle$, show that $G=\langle\varphi(g)\rangle$ as well.
(d) If $G=\langle g\rangle=\langle h\rangle$ show that there exists a unique automorphism $\varphi \in \operatorname{Aut} G$ such that $\varphi(g)=h$.
3. Suppose G is a group. For each $g \in G$, define a map $\varphi_{g}: G \rightarrow G$ by setting $\varphi_{g}(h)=g h g^{-1}$.
(a) Show that $\varphi_{g} \in \operatorname{Aut} G$.
(b) Show that the map $\varphi: G \rightarrow$ Aut G given by $g \mapsto \varphi_{g}$ is a group homomorphism.
(c) Show that the kernel of φ is the subgroup $Z(G)$ consisting of all $g \in G$ such that $g h=h g$ for all $h \in G$. This subgroup is called the center of G.
4. Suppose $f: M \rightarrow N$ is a morphism of magmas. Recall that this means that, for $m_{1}, m_{2} \in M, f\left(m_{1} m_{2}\right)=f\left(m_{1}\right) f\left(m_{2}\right)$. Show that the difference kernel $K(f)=$ $\left\{\left(m_{1}, m_{2}\right) \in M \times M: f\left(m_{1}\right)=f\left(m_{2}\right)\right\}$ is a submagma of $M \times M$. Similarly, if $f: M \rightarrow$ N are monoids, show that the difference kernel $K(f)$ is a submonoid of $M \times M$.
5. Suppose G is a group and $H \leq G$. Set $R=\left\{(x, y) \in G \times G: x^{-1} y \in H\right\}, L=$ $\left\{(x, y) \in G \times G: x y^{-1} \in H\right\}$.
(a) Show that both L and R are equivalence relations.
(b) Show that R is the difference kernel of the map $q_{R}: G \rightarrow G / H$ given by $g \mapsto g H$. Similarly, show that L is the difference kernel of the map $q_{L}: G \rightarrow H \backslash G$ given by $g \mapsto H g$.
(c) Show that H is normal in G if and only if R is a subgroup of $G \times G$.

6 (20 point bonus). Suppose M is a magma, N is a set and $q: M \rightarrow N$ is a surjective mapping with difference kernel $K(q)=\left\{\left(m_{1}, m_{2}\right) \in M \times M: q\left(m_{1}\right)=q\left(m_{2}\right)\right\}$. Suppose that $K(q)$ is a submagma of $M \times M$. Show that there is a unique binary operation operation on N such that $q: M \rightarrow N$ is a magma homomorphism. (Hint: Imitate the proof given in class of the corresponding result for groups.)

