Reminders about Semi-direct Products. In class, I covered semi-direct products. But they are not covered in the text. So here are some reminders about them.

Suppose N and H are groups and $\varphi : H \to \operatorname{Aut} N$ is a group homomorphism. We can put a binary operation on the Cartesian product $N \times H$ by setting

$$(n_1,h_1)(n_2,h_2) := (n_1\varphi(h_1)(n_2),h_1h_2).$$

Note that this is equal to the usual external direct product operation exactly in the case that $\varphi: H \to \operatorname{Aut} N$ is the trivial homomorphism. In general, we call it the *semi-direct product* binary operation.

In class, I showed that the semi-direct product binary operation gives a group structure on the Cartesian product. We write the resulting group as $N \rtimes H$ or $N \rtimes_{\varphi} H$ if we want to be specific about φ . It is called the *semi-direct product* of N with H. I wrote $i : N \rightarrow N \rtimes H$, j : $H \rightarrow N \rtimes H$ and $p : N \rtimes H \rightarrow H$ for the maps give as i(n) = (n, e), j(h) = (e, h) and p(n, h) = h. I showed that *i* and *j* are injective group homomorphisms, while *p* is surjective with kernel i(N). Then I showed that, for all $n \in N$ and $h \in H$

$$i(h)i(n)j(h)^{-1} = i(\varphi(h)(n)).$$

If *G* is a group with normal subgroup *N*, then we get a natural homomorphism $\varphi_G : G \to \operatorname{Aut} N$ given by $\varphi_G(g)(n) = gng^{-1}$. Similarly, if *H* is a subgroup of *G* we get a homomorphism $\varphi : H \to \operatorname{Aut} N$ given by restricting the homomorphism φ_G to *H*. Suppose G = NH and $N \cap H = e$. Then I showed that the map

 $f: N \rtimes_{\omega} H \to G$

given by f(n,h) = nh is an isomorphism of groups.

Practice Problems: Do the following problems from Herstein for practice, but do not turn them in. The format below is that **H4.5** means "Chapter 4, Section 5 of Herstein."

H4.1: 1, 2, 8, 31 **H4.2:** 1, 4, 5, 6

Graded Problems: Work the following problems for a grade.

1. Define $\varphi : \mathbb{R}^{\times} \to \operatorname{Aut} \mathbb{R}$ by $\varphi(\alpha)(\beta) = \alpha^2 \beta$. Then define

$$B = \left\{ \begin{pmatrix} x & y \\ 0 & x^{-1} \end{pmatrix} \in \mathbf{GL}_2(\mathbb{R}) : x \in \mathbb{R}^{\times}, y \in \mathbb{R} \right\}.$$

Show that $B \cong \mathbb{R} \rtimes_{\varphi} \mathbb{R}^{\times}$.

2. Suppose *G* is a non-abelian group of order 8 containing at least 2 elements of order 2. Show that $G \cong D_4$.

3. Suppose G is a group and H is an abelian group. Define a binary operation + on Hom(G, H) by writing $(\varphi + \psi)(g) = \varphi(g) + \psi(g)$.

- (a) Show that, with this binary operation, Hom(G, H) is an abelian group.
- (b) Suppose $f: G_1 \to G_2$ is a homomorphism of groups. Show that the map f^* : Hom $(G_2, H) \to$ Hom (G_1, H) given by $\varphi \mapsto \varphi \circ f$ is also a group homomorphism.

- (c) (10 point bonus) Show that $\operatorname{Hom}(C_n, \mathbb{Q}/\mathbb{Z}) \cong C_n$.
- 4. A map $f : A \rightarrow B$ between two rings is a *ring homomorphism* if
 - (a) For all *x*, *y* ∈ *A*, *f*(*x* + *y*) = *f*(*x*) + *f*(*y*) and *f*(*xy*) = *f*(*x*)*f*(*y*).
 (b) *f*(1_A) = 1_B.

Suppose *A* is a ring. Show that there is exactly one ring homomorphism $f : \mathbb{Z} \to A$.