HW8, due Monday, April 17

Math 403, Spring 2017
Patrick Brosnan, Instructor

Reminders about Semi-direct Products. In class, I covered semi-direct products. But they are not covered in the text. So here are some reminders about them.

Suppose N and H are groups and $\varphi: H \rightarrow$ Aut N is a group homomorphism. We can put a binary operation on the Cartesian product $N \times H$ by setting

$$
\left(n_{1}, h_{1}\right)\left(n_{2}, h_{2}\right):=\left(n_{1} \varphi\left(h_{1}\right)\left(n_{2}\right), h_{1} h_{2}\right) .
$$

Note that this is equal to the usual external direct product operation exactly in the case that $\varphi: H \rightarrow \operatorname{Aut} N$ is the trivial homomorphism. In general, we call it the semi-direct product binary operation.

In class, I showed that the semi-direct product binary operation gives a group structure on the Cartesian product. We write the resulting group as $N \rtimes H$ or $N \rtimes_{\varphi} H$ if we want to be specific about φ. It is called the semi-direct product of N with H. I wrote $i: N \rightarrow N \rtimes H, j$: $H \rightarrow N \rtimes H$ and $p: N \rtimes H \rightarrow H$ for the maps give as $i(n)=(n, e), j(h)=(e, h)$ and $p(n, h)=h$. I showed that i and j are injective group homomorphisms, while p is surjective with kernel $i(N)$. Then I showed that, for all $n \in N$ and $h \in H$

$$
j(h) i(n) j(h)^{-1}=i(\varphi(h)(n)) .
$$

If G is a group with normal subgroup N, then we get a natural homomorphism $\varphi_{G}: G \rightarrow$ Aut N given by $\varphi_{G}(g)(n)=g n g^{-1}$. Similarly, if H is a subgroup of G we get a homomorphism $\varphi: H \rightarrow \operatorname{Aut} N$ given by restricting the homomorphism φ_{G} to H. Suppose $G=N H$ and $N \cap H=e$. Then I showed that the map

$$
f: N \rtimes_{\varphi} H \rightarrow G
$$

given by $f(n, h)=n h$ is an isomorphism of groups.
Practice Problems: Do the following problems from Herstein for practice, but do not turn them in. The format below is that $\mathbf{H 4 . 5}$ means "Chapter 4, Section 5 of Herstein."

H4.1: 1, 2, 8, 31
H4.2: $1,4,5,6$

Graded Problems: Work the following problems for a grade.

1. Define $\varphi: \mathbb{R}^{\times} \rightarrow \operatorname{Aut} \mathbb{R}$ by $\varphi(\alpha)(\beta)=\alpha^{2} \beta$. Then define

$$
B=\left\{\left(\begin{array}{cc}
x & y \\
0 & x^{-1}
\end{array}\right) \in \mathbf{G L}_{2}(\mathbb{R}): x \in \mathbb{R}^{\times}, y \in \mathbb{R}\right\} .
$$

Show that $B \cong \mathbb{R} \rtimes_{\varphi} \mathbb{R}^{\times}$.
2. Suppose G is a non-abelian group of order 8 containing at least 2 elements of order 2 . Show that $G \cong D_{4}$.
3. Suppose G is a group and H is an abelian group. Define a binary operation + on $\operatorname{Hom}(G, H)$ by writing $(\varphi+\psi)(g)=\varphi(g)+\psi(g)$.
(a) Show that, with this binary operation, $\operatorname{Hom}(G, H)$ is an abelian group.
(b) Suppose $f: G_{1} \rightarrow G_{2}$ is a homomorphism of groups. Show that the map f^{*} : $\operatorname{Hom}\left(G_{2}, H\right) \rightarrow \operatorname{Hom}\left(G_{1}, H\right)$ given by $\varphi \mapsto \varphi \circ f$ is also a group homomorphism.

2
(c) $\left(10\right.$ point bonus) Show that $\operatorname{Hom}\left(C_{n}, \mathbb{Q} / \mathbb{Z}\right) \cong C_{n}$.
4. A map $f: A \rightarrow B$ between two rings is a ring homomorphism if
(a) For all $x, y \in A, f(x+y)=f(x)+f(y)$ and $f(x y)=f(x) f(y)$.
(b) $f\left(1_{A}\right)=1_{B}$.

Suppose A is a ring. Show that there is exactly one ring homomorphism $f: \mathbb{Z} \rightarrow A$.

