HW9, due Monday, May 11 Math 404, Spring 2015 Patrick Brosnan, Instructor

1. Use the formulas for the discriminant (for example, on page 48 of Milne's text) to compute the Galois groups of the following polynomials over \mathbb{Q} .

(a)
$$f(x) = x^3 + 7x + 2$$
.

(b) $g(x) = 27x^3 - 63x - 7$.

2. Suppose G is a solvable group and $G \rightarrow Q$ is a surjective group homomorphism. Show that Q is solvable.

3. Let S_n denote the symmetric group on $n \ge 2$ letters. Using the fact that S_n is generated by transpositions (ij) for $1 \le i < j \le n$, prove the following.

- (1) S_n is generated by transpositions of the form (1i) for $1 < i \le n$.
- (2) S_n is generated by transpositions of the form (i, i+1) for $1 \le i < n$.

4. Show that the equation $2x^5 - 10x + 5$ is irreducible over \mathbb{Q} and has exactly three real roots.