HW9, due Monday, May 11

Math 404, Spring 2015
Patrick Brosnan, Instructor

1. Use the formulas for the discriminant (for example, on page 48 of Milne's text) to compute the Galois groups of the following polynomials over \mathbb{Q}.
(a) $f(x)=x^{3}+7 x+2$.
(b) $g(x)=27 x^{3}-63 x-7$.
2. Suppose G is a solvable group and $G \rightarrow Q$ is a surjective group homomorphism. Show that Q is solvable.
3. Let S_{n} denote the symmetric group on $n \geq 2$ letters. Using the fact that S_{n} is generated by transpositions ($i j$) for $1 \leq i<j \leq n$, prove the following.
(1) S_{n} is generated by transpositions of the form (1i) for $1<i \leq n$.
(2) S_{n} is generated by transpositions of the form $(i, i+1)$ for $1 \leq i<n$.
4. Show that the equation $2 x^{5}-10 x+5$ is irreducible over \mathbb{Q} and has exactly three real roots.
