1. True or False

1. (5 points) Suppose n is an integer with exactly 3 positive divisors. Then $n=p^{2}$ for some prime p.
A. True, B. False.
2. (5 points) Suppose that $a \equiv b(\bmod m)$ and $c \equiv d(\bmod m)$ with $c \mid a$ and $d \mid b$. Then

$$
\frac{a}{c} \equiv \frac{b}{d} \quad(\bmod m)
$$

A. True,
 B. False.

Math 312-Final Name:
2. Multiple Choice
3. (5 points) The number of primitive roots of 98 is
A. $0, \quad$ B. $12, \quad$ C. $34, \quad$ D. $42, \quad$ E. none of the above.
4. (5 points) The number of primitive roots of 99 is
A. $0, \quad$ B. $8, \quad$ C. $34, \quad$ D. $66, \quad$ E. none of the above.

Math 312-Final Name:

5. (5 points) The number of zeros at the end of the decimal representation of 153 ! is
A. $28, \quad$ B. $33, \quad$ C. $37, \quad$ D. $62, \quad$ E. none of the above.
6. (5 points) $10^{200,000,000,000,000,000}$ days from today it will be
A. Sunday,
B. Monday,
C. Tuesday, D. Wednesday,
E. none of the above.
7. (10 points) Let n be the solution to the following ancient Indian problem (taken from Rosen):

If eggs are removed from a basket $2,3,4,5$ and 6 at a time, there remain respectively, 1,2,3,4 and 5 eggs. But if the eggs are removed 7 at a time, no eggs remain. What is the least number of eggs that could have been in the basket?
The number n is congruent to which of the following modulo 13 ?
A. 1, \quad B. 2, \quad C. 3, \quad D. $4, \quad$ E. none of the above.

3. Prove or Disprove

For this problem, clearly indicate whether the statement is true or false then prove or disprove it.
8. (12 points) If $\phi(n) \mid n-1$ then n is squarefree. (Here ϕ is the Euler ϕ-function.)
Math 312-Final \quad Name:

4. Prove

In this section, prove the statement given to you. 9. (12 points) Suppose r is a primitive root modulo p and $p \equiv 1(\bmod 4)$. Show that $-r$ is also a primitive root modulo p.
10. (12 points) Suppose a and b are positive integers. Show that

$$
(a, b)[a, b]=a b
$$

Math 312-Final Name:

11. (12 points) Suppose a and N are integers with $N \geq 0$. Show that

$$
(1+a)^{N} \equiv 1+N a \quad\left(\bmod a^{2}\right) .
$$

12. (12 points) Show that a positive integer n is composite if and only if $\phi(n) \leq n-\sqrt{n}$.

First Name/Last Name: \qquad
Student ID Number: \qquad
Section/Professor:
Signature:

By signing here, you confirm you are the person identified above and that all the work herein is solely your own.

Instructions:

- You are allowed to use pencil, pen and eraser only. No notes, index cards or calculators
- You may use the back of a sheet for calculations.
- Put your name on all sheets in the alloted space.
- Box any final answers.

Problem	Points	Score
1	5	
2	5	
3	5	
4	5	
5	5	
6	10	
7	12	
8	12	
9	12	12

