1. (20 points) Determine if the equation

$$
3 x^{2}=100+163 y
$$

has a solution with x and y integers.
2. (20 points) Use Euler's theorem to find the last digit of the decimal expansion of $17^{200,007}$.
3. (20 points) For every positive integer n, let $\pi(n)$ denote the number of prime number less than or equal to n. Using Wilson's theorem, show that

$$
\pi(n)=\sum_{j=2}^{n}\left\lfloor\frac{(j-1)!+1}{j}-\left\lfloor\frac{(j-1)!}{j}\right\rfloor\right\rfloor .
$$

4. (20 points) The point of this question is to work through an alternate proof of the fact that $\left(\frac{2}{p}\right)=-1$ for p a prime congruent to 3 or 5 modulo 8 . This proof is the one written in Gauss's book.
(a) Show that $\left(\frac{2}{3}\right)=\left(\frac{2}{5}\right)=-1$ by direct computation.
(b) Suppose p is an odd prime with $\left(\frac{2}{p}\right)=1$. Show that there is an odd integer x such that $3 \leq x \leq p-4$ and an integer k such that

$$
x^{2}-2=p k
$$

(c) Show that the integer k above is odd and satisfies $0<k<p$.
(d) Now suppose that p is congruent to 3 or 5 modulo 8 . Show that the integer k above has a prime factor q which is congruent to 3 or 5 modulo 8 .
(e) Using induction, conclude that $\left(\frac{2}{p}\right)=-1$ for all primes congruent to 3 or 5 modulo 8.
5. (20 points) Find at least three solutions to the linear diophantine equation

$$
63 x+163 y=13
$$

