Math 241: Matlab Project 2 due in the discussion session May 13

You first have to download the files plotpts.m, fillpts.m, nice3d.m , parallepip.m from the course web page. Use the command nice3d after the plotting commands.

Remember that you can work in teams of up to 3 students. Sharing of material between different teams is not permitted.

- 1. We want to throw a ball as far as possible. We throw the ball from a height of 8 feet with an initial speed of $V_0 = 16$ feet per second. At what angle θ should we throw the ball? The *x*-axis is horizontal, the *y*-axis is vertical.
 - (a) According to Newton's law we have $\mathbf{r}''(t) = (0, -32)$. We have $\mathbf{r}(0) = (0, 8)$. Assume the initial velocity is $\mathbf{r}'(0) = (a, b)$ and find $\mathbf{r}(t) = (x(t), y(t))$ as an expression of a, b, t.
 - (b) Find the time T > 0 when the ball hits the ground, i.e., y(T) = 0. Then find the distance x(T) as an expression of a, b. We call this expression f(a, b) (which we later want to maximize).
 - (c) We throw the ball at an angle θ so that $a = V_0 \cos \theta$, $b = V_0 \sin \theta$ where $V_0 = 16$. Try out the angles 10°, 20°,...,80°: For $\theta = \frac{\pi}{2} \cdot \frac{j}{9}$ and j = 1, ..., 8 find the distance f(a, b) and plot the curve $\mathbf{r}(t)$ for $t \in [0, T]$ (plot these 8 curves together in the same graph). Which of these angles gives the largest distance?
 - (d) We want to find a, b such that f(a, b) is maximal, subject to the constraint $a^2 + b^2 = 16^2$. Use Lagrange multipliers to find the optimal a, b. What is $\theta = \arctan(b/a)$?
- **2.** For the following problem use the symbolic integration command int and give the results $V, \bar{x}, \bar{y}, \bar{z}$ as symbolic expressions. Then use double() to find numerical values.
 - (a) Consider the cylinder consisting of points (x, y, z) ∈ ℝ³ satisfying x² + z² ≤ 1. Let D denote the part of this cylinder with -x ≤ y ≤ x, z ≥ 0. Plot the top surface of the region D using ezsurfvs. Find the volume V of D and the center of mass (x̄, ȳ, z̄) (assuming density 1).
 - (b) In cylindrical coordinates (r, θ, z) a torus is described by (r − 2)² + z² ≤ 1. Let D denote the part of this torus with x ≥ 0, y ≥ 0, z ≥ 0. Plot the top surface of the region using ezsurfpol. Find the volume V of D and the center of mass (x̄, ȳ, z̄) (assuming density 1).