Math 241: Matlab Project 2 due in the discussion session May 13

You first have to download the files plotpts.m, fillpts.m, nice3d.m, parallepip.m from the course web page. Use the command nice3d after the plotting commands.

Remember that you can work in teams of up to 3 students. Sharing of material between different teams is not permitted.

1. We want to throw a ball as far as possible. We throw the ball from a height of 8 feet with an initial speed of $V_{0}=16$ feet per second. At what angle θ should we throw the ball? The x-axis is horizontal, the y-axis is vertical.
(a) According to Newton's law we have $\mathbf{r}^{\prime \prime}(t)=(0,-32)$. We have $\mathbf{r}(0)=(0,8)$. Assume the initial velocity is $\mathbf{r}^{\prime}(0)=(a, b)$ and find $\mathbf{r}(t)=(x(t), y(t))$ as an expression of a, b, t.
(b) Find the time $T>0$ when the ball hits the ground, i.e., $y(T)=0$. Then find the distance $x(T)$ as an expression of a, b. We call this expression $f(a, b)$ (which we later want to maximize).
(c) We throw the ball at an angle θ so that $a=V_{0} \cos \theta, b=V_{0} \sin \theta$ where $V_{0}=16$. Try out the angles $10^{\circ}, 20^{\circ}, \ldots, 80^{\circ}$: For $\theta=\frac{\pi}{2} \cdot \frac{j}{9}$ and $j=1, \ldots, 8$ find the distance $f(a, b)$ and plot the curve $\mathbf{r}(t)$ for $t \in[0, T]$ (plot these 8 curves together in the same graph). Which of these angles gives the largest distance?
(d) We want to find a, b such that $f(a, b)$ is maximal, subject to the constraint $a^{2}+b^{2}=16^{2}$. Use Lagrange multipliers to find the optimal a, b. What is $\theta=\arctan (b / a)$?
2. For the following problem use the symbolic integration command int and give the results $V, \bar{x}, \bar{y}, \bar{z}$ as symbolic expressions. Then use double() to find numerical values.
(a) Consider the cylinder consisting of points $(x, y, z) \in \mathbb{R}^{3}$ satisfying $x^{2}+z^{2} \leq 1$. Let D denote the part of this cylinder with $-x \leq y \leq x, z \geq 0$.
Plot the top surface of the region D using ezsurfvs.
Find the volume V of D and the center of mass $(\bar{x}, \bar{y}, \bar{z})$ (assuming density 1).
(b) In cylindrical coordinates (r, θ, z) a torus is described by $(r-2)^{2}+z^{2} \leq 1$. Let D denote the part of this torus with $x \geq 0, y \geq 0, z \geq 0$.
Plot the top surface of the region using ezsurfpol.
Find the volume V of D and the center of mass $(\bar{x}, \bar{y}, \bar{z})$ (assuming density 1).
