Curves: Length, Tangent and Normal Vector, Curvature

A curve is given by a parametrization

$$
\mathbf{r}(t)=(x(t), y(t), z(t)), \quad a \leq t \leq b
$$

The velocity is $\mathbf{v}(t)=\mathbf{r}^{\prime}(t)$, the speed is $V(t)=\|\mathbf{v}(t)\|$, the acceleration is $\mathbf{a}(t)=\mathbf{r}^{\prime \prime}(t)$.
The length L of the curve is given by the integral over the speed

$$
L=\int_{a}^{b} V(t) d t
$$

the arc length is given by $s(t)=\int_{a}^{t} V(u) d u$ so that $\frac{d s}{d t}=V(t)$.
The velocity vector \mathbf{v} is tangential to the curve at the point $\mathbf{r}(t)$. The unit tangent vector \mathbf{T} is defined by

$$
\begin{equation*}
\mathbf{T}=\mathbf{v} / V \tag{1}
\end{equation*}
$$

We want to consider the function $\mathbf{T}(s)$ which gives the unit tangent vector for a point with arc length s, i.e.,

$$
\begin{aligned}
\mathbf{T}(s(t)) & =\mathbf{v}(t) / V(t) \\
\mathbf{v}(t) & =V(t) \mathbf{T}(s(t))
\end{aligned}
$$

We take the derivative of this equation and obtain for $\mathbf{a}(t)=\mathbf{v}^{\prime}(t)$ with the product and chain rule

$$
\begin{aligned}
& \mathbf{a}(t)=V^{\prime}(t) \mathbf{T}(s(t))+V(t) \mathbf{T}^{\prime}(s(t)) \underbrace{s^{\prime}(t)}_{V(t)} \\
& \mathbf{a}(t)=\underbrace{V^{\prime}(t) \mathbf{T}(s(t))}_{\mathbf{a}_{\mathrm{par}}}+\underbrace{V(t)^{2} \mathbf{T}^{\prime}(s(t))}_{\mathbf{a}_{\text {orth }}}
\end{aligned}
$$

Note that $\mathbf{T}(s) \cdot \mathbf{T}(s)=1$ implies by differentiation $2 \mathbf{T}^{\prime}(s) \cdot \mathbf{T}(s)=0$. Hence the vector $\mathbf{T}^{\prime}(s)$ is orthogonal on the tangent vector \mathbf{T}. Therefore we have obtained a decomposition $\mathbf{a}=\mathbf{a}_{\text {par }}+\mathbf{a}_{\text {orth }}$ where $\mathbf{a}_{\text {par }}$ is parallel to \mathbf{v} and $\mathbf{a}_{\text {orth }}$ is orthogonal on \mathbf{v}. The length of $\mathbf{T}^{\prime}(s)$ tells us about the change of the tangent vector as we move along the curve with speed 1 , we define this as the curvature κ :

$$
\kappa:=\left\|\mathbf{T}^{\prime}(s)\right\|
$$

The normal vector \mathbf{N} is defined as the unit vector in the direction of $\mathbf{T}^{\prime}(s)$:

$$
\begin{equation*}
\mathbf{N}=\mathbf{T}^{\prime}(s) /\left\|\mathbf{T}^{\prime}(s)\right\| . \tag{2}
\end{equation*}
$$

We therefore have with unit vectors \mathbf{T}, \mathbf{N} the decomposition

$$
\mathbf{a}=V^{\prime} \mathbf{T}+V^{2} \kappa \mathbf{N}
$$

which tells us that the acceleration vector is decomposed into

- a component parallel to the curve with size $V^{\prime}(t)$, i.e., the change of speed
- a component orthogonal to the curve with $\operatorname{size} V^{2} \kappa$, as consequence of the curvature

Recall the case of motion with constant speed V around a circle R. In this case we obtained an acceleration of size $V^{2} \kappa$ with the curvature $\kappa=1 / R$.
We can find the decomposition $\mathbf{a}=\mathbf{a}_{\text {par }}+\mathbf{a}_{\text {orth }}$ (where $\mathbf{a}_{\text {par }}$ is parallel to \mathbf{v} and $\mathbf{a}_{\text {orth }}$ is orthogonal on \mathbf{v}) as follows:

$$
\begin{equation*}
\mathbf{a}_{\mathrm{par}}=\operatorname{pr}_{\mathbf{v}} \mathbf{a}=\frac{\mathbf{a} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}} \mathbf{v}, \quad \mathbf{a}_{\text {orth }}=\mathbf{a}-\mathbf{a}_{\mathrm{par}} \tag{3}
\end{equation*}
$$

We have $\mathbf{a}_{\mathrm{par}}=a_{T} \mathbf{T}$ with

$$
\begin{equation*}
a_{T}=V^{\prime}=\frac{\mathbf{a} \cdot \mathbf{v}}{\|\mathbf{v}\|} \tag{4}
\end{equation*}
$$

We have $\mathbf{a}_{\text {orth }}=a_{N} \mathbf{N}$ with

$$
\begin{equation*}
a_{N}=\sqrt{\|\mathbf{a}\|^{2}-a_{T}^{2}}=\frac{\|\mathbf{v} \times \mathbf{a}\|}{\|\mathbf{v}\|} . \tag{5}
\end{equation*}
$$

The curvature κ can then be computed as

$$
\begin{equation*}
\kappa=\frac{a_{N}}{V^{2}}=\frac{\|\mathbf{v} \times \mathbf{a}\|}{V^{3}} . \tag{6}
\end{equation*}
$$

The binormal vector $\mathbf{B}=\mathbf{T} \times \mathbf{N}$ is a unit vector which is orthogonal on $\mathbf{v}(t)$ and $\mathbf{a}(t)$. Hence we can compute it as

$$
\mathbf{B}=\frac{\mathbf{v} \times \mathbf{a}}{\|\mathbf{v} \times \mathbf{a}\|}
$$

For computing $a_{T}, a_{N}, \kappa, \mathbf{T}, \mathbf{N}$ you should

- find the vectors \mathbf{v}, \mathbf{a}
- find $\mathbf{v} \cdot \mathbf{v}, \mathbf{v} \cdot \mathbf{a}, \mathbf{a} \cdot \mathbf{a}$ from which you get a_{T}, a_{N}, κ by (4), (5), (6)
- find \mathbf{T} using (1), find \mathbf{N} using (3) and $\mathbf{N}=\mathbf{a}_{\text {orth }} /\left\|\mathbf{a}_{\text {orth }}\right\|$

If you only need $a_{T}\left(t_{0}\right), a_{N}\left(t_{0}\right), \kappa\left(t_{0}\right), \mathbf{T}\left(t_{0}\right), \mathbf{N}\left(t_{0}\right)$ for a given number t_{0} : First compute the two vectors $\mathbf{v}\left(t_{0}\right), \mathbf{a}\left(t_{0}\right)$. These vectors just contain numbers (without any t), and you can do all computations using these two vectors. That's how you should solve problem 3 below.

Problem 1

Let $\mathbf{r}(t)=\left(3 t, 4 t^{3 / 2},-3 t^{2}\right)$ for $1 \leq t \leq 3$. Find the length of the curve.

Problem 2

Let $\mathbf{r}(t)=\left(t^{2}, t,-t\right)$. Find the curvature $\kappa(t)$.

Problem 3

Let $\mathbf{r}(t)=\left(t, t^{2}, t^{3} / 3\right)$. For $t_{0}=1$ compute \mathbf{N} and κ.

