Curves: Length, Tangent and Normal Vector, Curvature

A curve is given by a parametrization

$$\mathbf{r}(t) = (x(t), y(t), z(t)), \quad a \le t \le b$$

The velocity is $\mathbf{v}(t) = \mathbf{r}'(t)$, the speed is $V(t) = \|\mathbf{v}(t)\|$, the acceleration is $\mathbf{a}(t) = \mathbf{r}''(t)$. The length *L* of the curve is given by the integral over the speed

$$L = \int_{a}^{b} V(t) dt$$

the **arc length** is given by $s(t) = \int_{a}^{t} V(u) du$ so that $\frac{ds}{dt} = V(t)$.

The velocity vector **v** is tangential to the curve at the point $\mathbf{r}(t)$. The **unit tangent vector T** is defined by

$$\mathbf{T} = \mathbf{v}/V. \tag{1}$$

We want to consider the function T(s) which gives the unit tangent vector for a point with arc length *s*, i.e.,

$$\mathbf{\Gamma}(s(t)) = \mathbf{v}(t) / V(t)$$
$$\mathbf{v}(t) = V(t)\mathbf{T}(s(t))$$

We take the derivative of this equation and obtain for $\mathbf{a}(t) = \mathbf{v}'(t)$ with the product and chain rule

$$\mathbf{a}(t) = V'(t)\mathbf{T}(s(t)) + V(t)\mathbf{T}'(s(t))\underbrace{s'(t)}_{V(t)}$$
$$\mathbf{a}(t) = \underbrace{V'(t)\mathbf{T}(s(t))}_{\mathbf{a}_{\text{par}}} + \underbrace{V(t)^2\mathbf{T}'(s(t))}_{\mathbf{a}_{\text{orth}}}$$

Note that $\mathbf{T}(s) \cdot \mathbf{T}(s) = 1$ implies by differentiation $2\mathbf{T}'(s) \cdot \mathbf{T}(s) = 0$. Hence the vector $\mathbf{T}'(s)$ is orthogonal on the tangent vector \mathbf{T} . Therefore we have obtained a decomposition $\mathbf{a} = \mathbf{a}_{\text{par}} + \mathbf{a}_{\text{orth}}$ where \mathbf{a}_{par} is parallel to \mathbf{v} and \mathbf{a}_{orth} is orthogonal on \mathbf{v} .

The length of $\mathbf{T}'(s)$ tells us about the change of the tangent vector as we move along the curve with speed 1, we define this as the **curvature** κ :

$$\kappa := \|\mathbf{T}'(s)\|$$

The normal vector N is defined as the unit vector in the direction of $\mathbf{T}'(s)$:

$$\mathbf{N} = \mathbf{T}'(s) / \left\| \mathbf{T}'(s) \right\|.$$
⁽²⁾

We therefore have with unit vectors T, N the decomposition

$$\mathbf{a} = V'\mathbf{T} + V^2\kappa\mathbf{N}$$

which tells us that the acceleration vector is decomposed into

- a component parallel to the curve with size V'(t), i.e., the change of speed
- a component orthogonal to the curve with size $V^2\kappa$, as consequence of the curvature

Recall the case of motion with constant speed V around a circle R. In this case we obtained an acceleration of size $V^2 \kappa$ with the curvature $\kappa = 1/R$.

We can find the decomposition $\mathbf{a} = \mathbf{a}_{par} + \mathbf{a}_{orth}$ (where \mathbf{a}_{par} is parallel to \mathbf{v} and \mathbf{a}_{orth} is orthogonal on \mathbf{v}) as follows:

$$\mathbf{a}_{\text{par}} = \text{pr}_{\mathbf{v}} \mathbf{a} = \frac{\mathbf{a} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}} \mathbf{v}, \qquad \mathbf{a}_{\text{orth}} = \mathbf{a} - \mathbf{a}_{\text{par}}$$
(3)

We have $\mathbf{a}_{par} = a_T \mathbf{T}$ with

$$a_T = V' = \frac{\mathbf{a} \cdot \mathbf{v}}{\|\mathbf{v}\|}.\tag{4}$$

We have $\mathbf{a}_{\text{orth}} = a_N \mathbf{N}$ with

$$a_N = \sqrt{\left\|\mathbf{a}\right\|^2 - a_T^2} = \frac{\left\|\mathbf{v} \times \mathbf{a}\right\|}{\left\|\mathbf{v}\right\|}.$$
(5)

The **curvature** κ can then be computed as

$$\mathbf{\kappa} = \frac{a_N}{V^2} = \frac{\|\mathbf{v} \times \mathbf{a}\|}{V^3}.$$
(6)

The binormal vector $\mathbf{B} = \mathbf{T} \times \mathbf{N}$ is a unit vector which is orthogonal on $\mathbf{v}(t)$ and $\mathbf{a}(t)$. Hence we can compute it as

$$\mathbf{B} = \frac{\mathbf{v} \times \mathbf{a}}{\|\mathbf{v} \times \mathbf{a}\|}$$

For computing $a_T, a_N, \kappa, \mathbf{T}, \mathbf{N}$ you should

- find the vectors v, a
- find $\mathbf{v} \cdot \mathbf{v}$, $\mathbf{v} \cdot \mathbf{a}$, $\mathbf{a} \cdot \mathbf{a}$ from which you get a_T, a_N, κ by (4), (5), (6)
- find **T** using (1), find **N** using (3) and $\mathbf{N} = \mathbf{a}_{orth} / \|\mathbf{a}_{orth}\|$

If you only need $a_T(t_0)$, $a_N(t_0)$, $\kappa(t_0)$, $\mathbf{T}(t_0)$, $\mathbf{N}(t_0)$ for a given number t_0 : First compute the two vectors $\mathbf{v}(t_0)$, $\mathbf{a}(t_0)$. These vectors just contain numbers (without any t), and you can do all computations using these two vectors. That's how you should solve problem 3 below.

Problem 1

Let $\mathbf{r}(t) = (3t, 4t^{3/2}, -3t^2)$ for $1 \le t \le 3$. Find the length of the curve.

Problem 2

Let $\mathbf{r}(t) = (t^2, t, -t)$. Find the curvature $\kappa(t)$.

Problem 3

Let $\mathbf{r}(t) = (t, t^2, t^3/3)$. For $t_0 = 1$ compute **N** and κ .