Solutions of Problems for Curves

Problem 1

Let $\mathbf{r}(t)=\left(3 t, 4 t^{3 / 2},-3 t^{2}\right)$ for $1 \leq t \leq 3$. Find the length of the curve.
Solution: $\mathbf{v}(t)=\left(3,6 t^{1 / 2},-6 t\right)$, speed is $\|\mathbf{v}(t)\|=\sqrt{9+36 t+36 t^{2}}=\sqrt{(3+6 t)^{2}}=|3+6 t|$, length is

$$
L=\int_{1}^{3}\|\mathbf{v}(t)\| d t=\int_{1}^{3}|3+6 t| d t=\int_{1}^{3}(3+6 t) d t=\left[3 t+3 t^{2}\right]_{1}^{3}=36-6=30 .
$$

Problem 2

Let $\mathbf{r}(t)=\left(t^{2}, t,-t\right)$. Find the curvature $\kappa(t)$.
Solution: $\mathbf{v}(t)=(2 t, 1,-1), \mathbf{a}(t)=(2,0,0)$. We have $\mathbf{v}(t) \cdot \mathbf{v}(t)=4 t^{2}+2, \mathbf{v}(t) \cdot \mathbf{a}(t)=4 t, \mathbf{a}(t) \cdot \mathbf{a}(t)=4$ and hence

$$
a_{T}=\frac{4 t}{\sqrt{4 t^{2}+2}}, \quad a_{N}=\sqrt{4-\frac{(4 t)^{2}}{4 t^{2}+2}}=\sqrt{\frac{8}{4 t^{2}+2}}, \quad \kappa=\frac{a_{N}}{\|\mathbf{v}\|^{2}}=\sqrt{\frac{8}{\left(4 t^{2}+2\right)^{3}}}=\frac{1}{\left(2 t^{2}+1\right)^{3 / 2}} .
$$

Problem 3

Let $\mathbf{r}(t)=\left(t, t^{2}, t^{3} / 3\right)$. For $t_{0}=1$ compute \mathbf{N} and κ.
Solution: Here $\mathbf{v}(t)=\left(1,2 t, t^{2}\right), \mathbf{a}(t)=(0,2,2 t)$ and we evaluate these vectors at $t_{0}=1: \mathbf{v}\left(t_{0}\right)=(1,2,1), \mathbf{a}\left(t_{0}\right)=(0,2,2)$.
We can obtain all results from these two vectors $\mathbf{v}=(1,2,1)$ and $\mathbf{a}=(0,2,2)$. We compute

$$
\begin{gathered}
\mathbf{a}_{\mathrm{par}}=\operatorname{pr}_{\mathbf{v}} \mathbf{a}=\frac{\mathbf{a} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}} \mathbf{v}=\frac{6}{6}(1,2,1), \quad \mathbf{a}_{\text {orth }}=\mathbf{a}-\mathbf{a}_{\mathrm{par}}=(0,2,2)-(1,2,1)=(-1,0,1) \\
\mathbf{N}=\mathbf{a}_{\text {orth }} /\left\|\mathbf{a}_{\text {orth }}\right\|=\frac{1}{\sqrt{2}}(-1,0,1) \\
a_{N}=\left\|\mathbf{a}_{\text {orth }}\right\|=\sqrt{2}, \quad \kappa=\frac{a_{N}}{\mathbf{v} \cdot \mathbf{v}}=\frac{\sqrt{2}}{6}
\end{gathered}
$$

